
Branch Vanguard: Decomposing Branch Functionality into Prediction and
Resolution Instructions

Daniel S. McFarlin
Carnegie Mellon University
dmcfarlin@cmu.edu

Craig Zilles
University of Illinois at Urbana-Champaign

zilles@illinois.edu

Abstract

While control speculation is highly effective for generat-
ing good schedules in out-of-order processors, it is less ef-
fective for in-order processors because compilers have trou-
ble scheduling in the presence of unbiased branches, even
when those branches are highly predictable. In this paper, we
demonstrate a novel architectural branch decomposition that
separates the prediction and deconvergence point of a branch
from its resolution, which enables the compiler to profitably
schedule across predictable, but unbiased branches. We show
that the hardware support for this branch architecture is a
trivial extension of existing systems and describe a simple
code transformation for exploiting this architectural support.
As architectural changes are required, this technique is most
compelling for a dynamic binary translation-based system like
Project Denver.

We evaluate the performance improvements enabled by this
transformation for several in-order configurations across the
SPEC 2006 benchmark suites. We show that our technique
produces a Geomean speedup of 11% for SPEC 2006 Integer,
with speedups as large as 35%. As floating point benchmarks
contain fewer unbiased, but predictable branches, our Ge-
omean speedup on SPEC 2006 FP is 7%, with a maximum
speedup of 26%.

1. Introduction
Control dependence is a major performance challenge for in-

order machines, especially those that have issue width greater
than one, independent of whether they are superscalar, VLIW,
DSP, or GPU. While some machines will issue post-branch
instructions in parallel with branch instructions (e.g., the DEC
Alpha 21164 [11]), the benefit of doing so is limited, as the pri-
mary impact of control dependence is on compiler generated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA’15, June 13-17, 2015, Portland, OR USA
© 2015 ACM. ISBN 978-1-4503-3402-0/15/06..$15.00
DOI: http://dx.doi.org/10.1145/2749469.2750400

code schedules [20, 31]. That is, even with perfect branch pre-
diction, control dependence impacts performance on in-order
machines. Scheduling across basic block boundaries carries
two challenges: hoisted instructions must not have user visible
side-effects that violate the semantics of the source program,
and the benefit of hoisting instructions must be balanced with
the cost of unnecessarily executing instructions hoisted from
the wrong path.

PR
ED

IC
TA

BI
LI

TY

Highly-Biased Low-Biased

Rarely Occurs Predication

Our
ContributionSuperblocks

Figure 1: Proposed Transformations for Conditional Non-Loop
Branches based on Bias and Predictability

To extract greater ILP, schedulers for in-order machines
attempt to build wider issue groups by hoisting instructions
from a sequence of successive basic blocks. The sequence
of basic blocks selected from which to hoist for most of the
well-known techniques (e.g., trace scheduling [14, 6, 37], su-
perblocks [21], hyperblocks [30]) is based on the bias of the
branches. The formation of these aggregate scheduling re-
gions is typically founded on the presence of highly-biased
branches (i.e., branches that tend to resolve in one-direction
substantially more frequently than the other direction). Integer
code features many such branches including branches that
are so heavily biased that they can be assert converted out of
existence with little cost [34].

The presence of unbiased branches poses a problem for
compilers. The classic solution has been predication [1]. Pred-
ication, in some form or another, is a common feature in
many modern architectures and is particularly useful for un-
predictable hammocks. In these situations, the cost of con-
verting the control dependence into a data dependence and
executing both paths is less than the amortized cost of the
branch mispredictions that are being removed. If, however, the
branch is predictable, these costs (of fetching/issuing instruc-

323

0.5

0.6

0.7

0.8

0.9

1.0
BIAS
PREDICTABILITY

Figure 2: Integer Predictability Remains High vs. Bias for the
Top 75 Conditional Forward Branches Averaged Across SPEC 2006
Int

0.5

0.6

0.7

0.8

0.9

1.0
BIAS
PREDICTABILITY

Figure 3: Floating Point Predictability Remains High vs. Bias
for the Top 75 Conditional Forward Branches Averaged Across
SPEC 2006 FP

tions with false predicates) are being incurred merely because
the compiler doesn’t have a better way to express the code.

This suitability of control speculation mechanisms can be
summarized as shown in Figure 1. When branches are highly
biased, superblock formation is effective. As branch pre-
dictability is almost universally higher than branch bias, these
branches are typically all predictable. Predication is most prof-
itable for unbiased, unpredictable branches, which leaves the
region of predictable, but unbiased branches, which is the
focus of this paper.

In most programs, there are a non-trivial number of branches
whose predictability significantly exceeds their bias. Figures 2
and 3 graph the predictability and bias of the top 75 most-
executed forward branches (sorted by bias) averaged across
SPEC 2006 Int and FP, respectively. For the first half of the
graph, predictability and bias remain high and track each other
so well they are virtually indistinguishable, but toward the
end of the graphs, branch bias begins to diverge from branch
predictability. As predictability declines, bias declines much
more rapidly. One way to view this graph is that roughly
one third (SPEC INT) to one half (SPEC FP) of the time that
a branch goes against its preferred direction, the processor
would correctly predict that. This discrepancy between branch
predictability and bias currently represents a lost opportunity
for code scheduling on in-order machines, and this discrepancy
only increases as branch predictor accuracy improves.

This paper makes the following contributions:
• We propose a novel architectural decomposition of branches

into a branch prediction instruction and a branch resolution
instruction.

• We describe a low-complexity transformation, the Decom-
posed Branch Transformation, that enables in-order super-
scalars to exploit exposed branch predictability.

• We examine the modest hardware support needed for this
transformation.

• We evaluate the performance improvements enabled by this
transformation for several in-order configurations across the
SPEC 2000 and SPEC 2006 benchmark suites

• We show that for SPEC 2000 and SPEC 2006 Integer, our
technique produces a geometric mean speedup of 11% with
maximum speedups of 35% and 18%, respectively. For
SPEC 2000 and SPEC 2006 Floating Point, our technique
produces a geometric mean speedup of 7% with maximum
speedups of 26% and 20%, respectively.

• We demonstrate our technique’s sensitivity to branch predic-
tor accuracy.
The remainder of this paper is organized as follows: Sec-

tion 2 explores the decomposition of branch behavior which
enables the transformation described in full detail in Section
3. Section 4 describes the front-end and back-end hardware
required to support this transformation. In Section 5, we show
and analyze the performance improvement our transformation
can achieve on different in-order superscalar configurations.
Section 6 examines the other side-effects of our transformation
particularly the impact of increased code size. Related Work
is discussed in Section 7 and we conclude in Section 8.

2. Decomposing Branch Behavior
It has previously been recognized by many that branches

(as encoded by most architectures) perform many functions
in a single operation [38, 41, 16, 29, 24, 43]. Previously pub-
lished decompositions typically recognize three components
of branch functionality:
• Target specification (TS): provide the information necessary

to construct the branch target.
• Condition computation (CC): a comparison operation on one

or more program values to determine if the branch should
be taken or not taken.

• Control flow transfer (CFT): the program point at which the
control flow divergence actually takes place.
Figure 4 shows how this branch functionality has been pre-

viously decomposed into multiple operations. Subfigure 4(a)
shows the implementation commonplace in modern architec-
tures where all of the functionality is performed by a single
operation; note we make no distinction between architectures
that use condition codes vs. register operands because in both
cases the branch indicates how to interpret those program
values.

Subfigure 4(b) shows the separation of the branch target
computation from the rest of the branch. Since the target of
a direct branch is known statically, this information (often
with a static branch prediction) can be provided to a machine
well before the branch instruction to allow the processor to
prefetch/fetch the instructions at the branch target [41, 39]

324

pre-branch
code

fall through
path

blt r3, r4, targ

targ:

taken
branch

path

TS CC CFT

(a)

pre-branch
code

fall through
path

blt r3, r4, btr1

targ:

taken
branch

path

TS

CC CFT

pre-branch
code

btr1 = targ

(b)

pre-branch
code

fall through
path

blt r3, r4, targ

targ:

taken
branch

path

delay slots

TS CC

CFT

(c)

fall through
path

blt r3, r4, tar2

tar1:

taken path

delay slots

TS CC

CFT

pre-branch
code

pre-branch
code

exit

ble r1, r2, tar1 TS CC

tar2:

taken path

(d)

targ:

pre-branch
code

pred fall-
thru path

pred targ TS

CC

CFT

res_lt r3, r4, fix1

Pr

fall through
path

pred taken
path

CCres_lt r3, r4, fix2
taken path

(e)

Figure 4: Decomposing branch functionality: TS: Target Specification, CC: Condition Computation, CFT: Control Flow Transfer,
and Pr: Prediction. (a) in a traditional branch architecture, (b) early specification of a branch target (and storage in a branch target
register(btr)) permits prefetching, (c) branch delay slots implicitly encode the control flow transfer after a number of instructions
executed whether the branch is taken or not, (d) explicitly marking the point of the control flow transfer permits using it for
multiple branches, and (e) our proposed branch decomposition hoists the control flow transfer with respect to the condition
computation.

and/or load them into a special fetch buffer [8] without the
need for a branch target buffer.

Subfigures 4(c) and (d) shows the separation of the control
flow transfer from the rest of the branch functionality. This
decomposition is incredibly effective when the branch con-
dition can be computed early (e.g., in some numerical codes
where the control flow is data independent) because it obvi-
ates the need to predict the branch, provided that the branch
condition can be computed sufficiently early. The formula-
tion shown in Subfigure 4(c) is typically referred to as branch
delay slots with the location of the control flow transfer speci-
fied implicitly by the branch. The number of delay slots can
either be fixed architecturally [18] or encoded in the branch
instruction [12]. Subfigure 4(d) shows the IBM ACS branch
formulation where the location for the control flow transfer is
indicated using an exit instruction [38], which additionally
allows multiple branch instructions to be associated with a
single exit instruction to implement multi-way branches as
shown; the exit instruction transfers control to the target of the
first branch instruction to compute a true predicate.

In these previous decompositions, the control flow transfer
remains the final step of the branch, and the benefit comes from
hoisting other parts of the branch functionality above this step.
As such, it is important to note that for many programs it is
difficult to significantly hoist branch resolution computations
due to data dependences, especially for superscalar machines.
It is for exactly this reason that our proposed formulation
hoists the control flow transfer above the branch resolution.

2.1. Prediction-Resolution Decomposition
Our proposed decomposition recognizes these previous three
parts of a branch functionality, but also considers a fourth
component that is of equal importance.
• Prediction (Pr): the point at which the front end predicts the

branch’s outcome.

We consider prediction explicitly, because in our proposed
branch decomposition, we hoist the control flow transfer above
the branch resolution, which means we fundamentally need a
prediction to decide which way the branch should go. Specifi-
cally, we decompose a branch into two instructions:
1. a predict instruction: this operation consists only of a

predict opcode and a target. When fetched, this opera-
tion is predicted by the branch predictor and, if predicted
taken, fetch continues at the target PC.

2. a resolve instruction: this instruction looks like a normal
branch, but uses a special opcode (e.g., resolve_lt for
blt). It is always predicted not-taken by the front end.
If the branch resolves contrary to the prediction from the
predict instruction, control is transferred to the target
of the resolve instruction. In any case, the branch predic-
tor entries associated with the predict instruction are
updated.

This decomposition is shown in Subfigure 4(e). Note that,
because the predict operation includes the control flow diver-
gence, statically there are two resolve instructions associated
with each predict instruction, one each for the predict taken
and predict not-taken paths. In the Section 3, we show how
this instruction is used by the compiler.

2.2. Architectural Change via DBT

As our proposal represents a non-trivial architectural change
in the specification of a relatively fundamental operation (e.g.,
branches) and the technique is targeted at addressing a problem
found only in in-order microarchitectures, we’re not proposing
that this should be adopted for main stream ISAs. Instead,
the motivation for this technique is the class of dynamic bi-
nary translation (DBT)-based architectures like the Transmeta
Crusoe [9] and Nvidia’s Project Denver [7]. In these archi-
tectures, a mainstreams ISA like x86 or ARM, is translated

325

by software at run-time to a microarchitecture-specific (often
VLIW) hidden ISA. As all code generation for this hidden
ISA is controlled by the microprocessor vendor, the hidden
ISA can be re-defined each generation to add and remove ar-
chitectural features. In such a context, there is little cost to
extending the hidden ISA and ideas can be evaluated based on
their hardware/software cost relative to the performance they
provide.

These VLIW-based DBT architectures typically provide
many features for facilitating compiler scheduling. Many of
these are complementary to the decomposed branch transfor-
mation described next, as our transformation typically enables
additional opportunities for traditional optimizations. Specifi-
cally, three kinds of general mechanisms are useful:
1. Non-faulting or deferred-faulting load instructions en-

able hoisting loads (to overlap their latency with other oper-
ations) onto paths where they wouldn’t have been executed
in the original program. A variety of mechanisms have
been proposed and implemented to permit the suppression
and handling of faults from control speculation [32, 22].

2. Support for data speculation enables hoisting loads past
may-aliasing stores, for which a variety of mechanisms
exist. Notably, in the context of DBT architectures, it has
been shown that data misspeculation can be made to be
rare [9], so that recovery code can be placed on separate
pages of memory, so as to not impact the instruction cache
behavior of the program.

3. Additional registers to hold speculative values enables
the compiler to hoist more aggressively without spilling to
the stack.

We assume the above support as described in Section 5.

3. The Decomposed Branch Transformation
Figure 5 shows a high-level view of the general code trans-

formation we perform to decompose a predictable (90% on
both paths) but low-biased (60/40) branch’s prediction point
from its resolution point. We present this transformation as
a sequence of correctness preserving mini-transformations
shown in each subfigure.

The first Subfigure, 5(a), shows a conditional branch con-
tained in a block labeled A with two possible successor blocks,
B and C. The conditional branch consists of a compare (cmp)
followed by a branch (br) instruction.

Subfigure 5(b) decomposes the br instruction into a
predict instruction and an resolve instruction, as dis-
cussed in Section 2.1. In splitting the branch, we simultane-
ously split the block A into 3 blocks: the original block A
and two new blocks A′ that contain only the resolve in-
structions. The leftmost block A′ is the path that is predicted
to continue to block B, while the rightmost is predicted to
continue to block C. Since the prediction could be incorrect,
both A′s provide paths to both blocks B and C.

Through this transformation, we create a pair of highly-
biased branches, because the branches in the A′ blocks are

only taken the 10% of the time when the original branch was
mispredicted. These highly-biased branches create new prof-
itable opportunities for code scheduling, as we demonstrate.
For example, Subfigure 5(c) shows how the compare instruc-
tion and other instructions from block A can be pushed down
into the A′s, because the predict instruction is not data depen-
dent on any of the instructions in A.

Subfigure 5(d) is largely akin to well-known Superblock
formation with associated compensation code; we split the B
and C blocks into two portions; the upper portions of both
blocks consist of instructions that would be profitable to hoist
into block A′; we subsequently hoist these instructions into
the new A′ blocks. By doing so, we can overlap the pushed
down contents from block A with the hoisted contents of
blocks B and C. When this hoisting is complete, the resolve
instructions for BA′ and CA′ need to fall-thru to B′ and C′,
respectively.

Since we typically restrict our transformation to branches
with good predictability, most of the time the branch is re-
solved successfully and execution falls-thru to the B′ or C′

block. Should the resolve detect a misprediction, we need
to redirect control to the correct path. The remaining C and
B blocks (now labelled Correct-C and Correct-B) serve as
compensation code before jumping back into the main flow in
blocks C′ and B′, respectively.

A concrete example of a code segment which has high
predictability and low bias (from SPEC 2006 omnetpp’s
cArray::add(cObject*) function and simplified for
clarity) is shown and subsequently transformed in Figure 6.
The major benefit of the transformation for this code segment
is overlapping the load latency of the loads in block A with the
loads in blocks B and C, which were serialized by the branch
in the original code. Saving a load latency is significant on
high-frequency machines with multi-cycle cache hits.

Due to space limitations, we compress steps while provid-
ing an alternate perspective on the transformation; rather than
hoisting instructions from the successor blocks into the res-
olution blocks we can conceptualize the transformation as
pushing the branch resolution slice down into both successor
blocks. Subfigure 6(b) shows how the branch resolution has
been pushed down both paths; note the presence of lines 2 and
3 in both the BA′ and CA′ blocks. Line 3 is the instruction
that determines if the branch was resolved in the predicted
direction; block A now ends with line 3p which represents
the point where the front-end performs the branch prediction.
The loads shown in lines 5 and 7 in BA′ and line 40 in CA′

are distinguished by a + sign to indicate to the back-end to
suppress faults resulting from their speculative execution.

The new location of line 6 in B′ and line 41 in C′ shows
that stores have been pushed down below the branch resolu-
tion point in both blocks. There is little benefit to speculatively
executing these stores and had we retained them in their origi-
nal position, they might have corrupted state in the event of a
branch misprediction.

326

A

B C

cmp
br

60 40

(a) Initial Configuration of a condi-
tional branch with 60/40 bias and
90% predictability along both paths

A

 A' A'

B C

cmp

resolve
predict

60 40

90 9010 10

(b) Decompose br into predict & resolve in-
structions. Create resolution (A′) blocks and
adjust resolve targets

A

 A' A'

B C

cmp

resolve
predict

60 40

90 9010 10

 B' C'

(c) Split B and C blocks into upper (hoistable)
and lower portions. Push cmp instruction into
resolve blocks

A

 BA' CA'

Correct-B Correct-C

cmp

resolve
predict

60 40

90 9010 10

 B' C'

(d) Hoist upper B and C blocks into resolution
blocks. Add correction code as needed

Figure 5: General Decomposed Branch Transformation

The low register-pressure of the surrounding context for this
code segment obviates the need for temporary registers. More
generally, we may need to write to temporary registers in the
speculative portions (BA′ and CA′) to prevent the clobbering
of live-in values for the alternate path in the event of a branch
misprediction. Often, we can hide the moves from these tem-
poraries back into architected registers in the shadow of the
resolution instruction, where the write-back of the moves can
be suppressed in the event of misprediction.

Subfigure 6(c) shows correction code blocks which, in this
instance, merely duplicate the hoisted instructions. More gen-
erally, arbitrary compensation code can be included in these
blocks to undo the effects of executing wrong-path instructions
so as to avoid needing to store speculative values in temporary
registers. The Correct-B, Correct-C blocks directly update
architectural state since both correction blocks are guaranteed
to be on the correct path.

4. Hardware Support
Our decomposed branches require support in the front end to

correctly update the branch predictor. The speculative compi-
lation opportunities created by the Decomposed Branch Trans-
formation benefit from additional architectural support, as has
been previously researched. We discuss this hardware support

presently.
Decomposing branch prediction from branch condition eval-

uation (they are separate instructions in our machine) slightly
complicates the way in which the branch predictors are trained
and the manner in which the machine recovers from branch
mispredictions. Specifically, our branch resolution instruction
(the resolve instruction) serves two purposes: 1) it redirects
fetch (when our original prediction was incorrect) to fix-up
code that patches up state so that we can resume execution
along the correct path, and 2) it provides feedback to update
the predictor associated with the prediction instruction. Since
the PC of the prediction instruction and the PC of the branch
resolution instruction are no longer the same, we need to re-
associate the outcome of the branch with the prediction of the
branch. We maintain this association with a small buffer in
the front-end called the Decomposed Branch Buffer (DBB).

The task of maintaining this buffer is somewhat simplified
by the fact that branches in our machine are fetched and exe-
cuted in-order and the fact that the compiler does not reorder
or interleave prediction and resolve instructions. Col-
lectively, these properties enable us to use a simple circular
buffer where decomposed branch meta-data is maintained in
FIFO order via a tail pointer. Figure 7 shows the placement of
the DBB, its integration into the front-end of the machine, and

327

 A

 0: load r1, [rbx+0x40]
 1: load r0, [rbx+0x48]
 2: cmp r1, r0
 3: jnl 40

B

4: mov rsi, r0
5: load r4, [rbx+0x38]
6: store [r4+rsi*8], rbp
7: load rcx, [rbx+0x4c]
8: mov rdx, rsi
9: cmp rdx, rcx
10: jl 70 // not shown

C

40: load r2, [rbx+0x44]
41: store [rsp], r2
42: lea r3, [r0+r1]
43: mov rcx, 0x8
44: mul rcx, r3
45: mov rdi, 0xfffffffff
46: cmp rdi, r3
47: jl 80 // not shown

(a) Initial Code

 A

 0: load r1, [rbx+0x40]
 1: load r0, [rbx+0x48]
 3p: predict-jnl 40

BA'

5: load+ r4, [rbx+0x38]
7: load+ rcx, [rbx+0x4c]
2: cmp r1, r0
3: resolve-jnl Correct-C

B'

4: mov rsi, r0
8: mov rdx, rsi
6: store [r4+rsi*8], rbp
9: cmp rdx, rcx
10: jl 70 // not shown

CA'

40: load+ r2, [rbx+0x44]
43: mov rcx, 0x8
45: mov rdi, 0xfffffffff
2: cmp r1, r0
3: !resolve-jnl Correct-B

C'

41: store [rsp], r2
42: lea r3, [r0+r1]
44: mul rcx, r3
46: cmp rdi, r3
47: jl 80 // not shown

(b) Portion of the branch resolution slice pushed down both paths. Stores
pushed below branch resolution

 A

 0: load r1, [rbx+0x40]
 1: load r0, [rbx+0x48]
 3p: predict-jnl 40

BA'

5: load+ r4, [rbx+0x38]
7: load+ rcx, [rbx+0x4c]
2: cmp r1, r0
3: resolve-jnl Correct-C

CA'

40: load+ r2, [rbx+0x44]
43: mov rcx, 0x8
45: mov rdi, 0xfffffffff
2: cmp r1, r0
3: !resolve-jnl Correct-B

Correct-C

53: load r2, [rbx+0x44]
54: mov rcx, 0x8
55: mov rdi, 0xfffffffff
56: jmp 41 // goto C'

Correct-B

50: load r4, [rbx+0x38]
51: load rcx, [rbx+0x4c]
52: jmp 4 // goto B'

B'

4: mov rsi, r0
8: mov rdx, rsi
6: store [r4+rsi*8], rbp
9: cmp rdx, rcx
10: jl 70 // not shown

C'

41: store [rsp], r2
42: lea r3, [r0+r1]
44: mul rcx, r3
46: cmp rdi, r3
47: jl 80 // not shown

(c) Addition of correction blocks and new branch targets

Figure 6: Decomposed Branch Transformation For omnetpp

the key operations associated with the DBB’s upkeep.
Subfigure 7(a) shows an insert operation on the DBB; a

decomposed prediction instruction is detected after decode and
is represented by the shaded instruction in the Fetch Buffer.
Like any other conditional branch, the prediction instruction
goes through the branch predictor. The resulting prediction
is piped back to the fetch-unit as normal. In addition, we
increment the DBB tail pointer and write the prediction and
all of the metadata necessary for a predictor update (e.g..,
indices) into the DBB at the location indexed by the DBB tail
pointer. The prediction instruction is then dropped from the
Fetch Buffer since its main function, steering the fetch unit,
has been fulfilled.

At some point in the future, the corresponding branch reso-
lution instruction is fetched (shown as the striped instruction
in the Fetch Buffer in Subfigure 7(b). This resolution instruc-
tion always corresponds to the previous (in program order)
prediction instruction, which is the one referenced by the DBB
tail pointer. The value of the DBB tail pointer register is then
read out of the register and stored with the branch resolution
instruction as it moves down the pipeline.

The DBB requires minor modifications to the re-steer
logic’s control path and data path which we show in Subfigure
7(c). Should a resolution instruction detect a misprediction,
the correct path PC is piped back to the fetch unit along with
the index into the DBB that was inserted into the resolution

328

History

PC H
A
S
H

Write Port

Predictor Table

Read Port

DBB Tail
Pointer

Ne
w

Indices

DBB

To Fetch Unit

Indices

Prediction State

Fetch Buffer
To Back-End

O
ld

predict instruction: Insert New DBB Entry

 Existing BPU

(a) Write new prediction

History

PC H
A
S
H

Write Port

Predictor Table

Read Port

DBB Tail
Pointer

In
de

x

Indices

DBB

To Fetch Unit

Indices

Prediction State

Fetch Buffer

Insert DBB Index Into Branch Resolution Instruction
To Back-End

 Existing BPU

(b) Insert tail pointer index into corresponding resolution instruction

History

PC H
A
S
H

Write Port

Predictor Table

Read Port

Indices

DBB

Resteer Logic To Fetch Unit

From Back-End

DBB Index from Branch Resolution Instruction

New Prediction
State

Indices

(c) Update BPred after mispredict

Figure 7: The Decomposed Branch Buffer and its operations.
The area shaded in grey denotes existing HW structures and
data/control paths

instruction when it passed through the front-end. This index
is used to access the DBB entry that contains the prediction
meta-data and the indices into the predictor. We then update
the predictor with the new predictor metadata that is a function
of the metadata stored in the table and the correct path data.
In this way, the mispredictions detected by the resolution in-
struction are associated with the prediction instruction. In the
event of a non-decomposed branch misprediction, the DBB
tail pointer needs to be recovered to maintain correct corre-
spondence between prediction and resolution instructions; the
same mechanism used to recover branch history can be used
for this purpose.

While the compiler doesn’t re-order or interleave prediction
and resolution instructions, exception control flow resulting
from interrupts, exceptions, and context switching can po-
tentially do so. There are two approaches to handle these
occurrences. First, we could ignore them, as they are relatively
uncommon and only result in spurious branch predictor up-
dates. By construction, the DBB always associates a resolution
instruction with the immediately previous prediction instruc-

tion, so the machine recovers from any mismatch each time a
prediction instruction is fetched. If the frequency of these spu-
rious updates is deemed too high, a second approach would be
to mark the DBB entries as invalid on one of these exceptional
control flow events and suppress any branch predictor updates
using an invalid DBB entry.

We size the DBB empirically. In practice, the number of
outstanding decomposed branches is small; there tends to be
significant back-pressure in the in-order due to head-of-line
blocking in the issue stage. We found that 16 entries were more
than sufficient, resulting in a 4-bit DBB index that needs to
be stored with resolution instructions. In our implementation,
each DBB entry contains 24 bits: 16 bits for the indices into the
branch prediction table hierarchy and 8 bits for the prediction
metadata. The DBB itself requires one read and one write
port.

Key Structures Configuration Parameters
Bpred PTLSim default: GShare, 24 KB 3-table direction

predictor, 4K-entry BTB, 64-entry RAS
Front-End 5 stages, Experimentally Varied 2/4/8 wide

Fetch/Decode/Dispatch, 32-entry FetchBuffer
Execution Ports Experimentally Varied 2/4/8
Functional Units Up to 2 x LD/ST, 2 x INT/SIMD-Permute, 4 x 64-bit

SIMD/FP, 1-cycle bypass
L1 Caches 8-way 32 KB L1-D$, 4-way 32 KB L1-I$, 64B lines,

4-cycle latency
L2 Cache 16-way 256KB Unified, 12-cycle latency
L3 Cache 32-way 4MB LLC, 25-cycle latency
Miss Handling 64-entry Miss Buffer, 64-entry Load Fill Request

Queue
Main Memory 140-cycle latency

Table 1: Machine Configuration Parameters

5. Experimental Evaluation
In our evaluation, we use LLVM 3.5, PTLSim [44], and the

SPEC 2006 and 2000 benchmark suites. As it is not profitable
to decompose all branches, we use a profile-guided strategy
to select the set of branches to transform. We run the TRAIN
input sets to completion in PTLSim to collect branch bias and
predictability. We transform forward branches1 whose pre-
dictability exceeds bias by at least 5%; this heuristic provided
the best overall performance. Code generation is handled by
LLVM at the -O3 level with PGO and SSE2 vectorization.

For performance evaluation, we use REF input sets. We
select hot spots for simulation using Intel’s Software Develop-
ment Emulator [5]; simulation is up to 10B dynamic instruc-
tions. We simulate three different width in-order superscalars
(2-wide, 4-wide, and 8-wide, with configuration parameters
shown in Table 1). For our experimental system, PTLSim was
extended with a decoupled branch buffer (DBB, as described
in Section 4) as well as the support for speculative compila-
tion as discussed in Section 2.2, including “shadow registers”
which allows the compiler to re-use architectural registers for

1Backwards-taken branches i.e. loop branches tend to be highly biased and
highly predictable and are ably handled by well-known loop transformations
such as modulo scheduling.

329

speculative computations and commit them when resolution
instructions commit.

Name SPD PBC PDIH ALPBB ASPCB PHI MPPKI PISCS
h264ref 23.1 50.2 11.8 9.6 21.6 76.9 6.7 15.6

perlbench 18.4 45.1 12.7 4.9 23.0 50.5 1.6 14.8
astar 16.3 40.3 14.6 6.6 21.51 64.4 13.6 10.2

omnetpp 12.2 23.0 8.1 2.5 79.8 80.3 5.4 12.1
xalancbmk 12.1 24.7 5.0 1.7 27.5 72.4 7.3 9.6

sjeng 10.3 25.6 7.8 3.2 27.7 60.0 12.8 10.6
gobmk 9.1 14.4 5.6 3.4 23.1 84.1 17.8 9.6

gcc 9.1 23.6 6.8 2.3 29.5 68.7 8.4 10.0
mcf 8.1 32.6 6.1 6.0 107.2 73.8 25.5 6.8

bzip2 7.7 13.7 3.5 3.4 26.3 61.3 6.5 9.8
hmmer 6.0 10.3 3.7 12.2 32.5 97.8 1.2 9.5

libquantum 3.1 10.7 5.4 0.8 127.3 78.1 1.1 10.4

wrf 26.3 22.2 14.9 6.1 34.2 69.0 0.5 10.2
povray 22.3 26.5 8.6 3.0 22.7 84.8 2.6 9.7

tonto 11.1 29.3 9.2 3.1 17.1 79.8 4.4 8.3
gamess 11.0 44.1 11.4 3.5 23.4 54.0 4.4 14.6
calculix 10.4 19.2 4.14 2.1 23.7 10.2 7.7 10.1

milc 7.7 23.5 12.8 10.1 32.8 76.9 1.3 10.0
soplex 7.2 13.1 4.3 1.0 37.5 48.7 5.5 9.7
namd 7.0 23.2 5.6 2.4 24.9 94.2 2.1 10.3

lbm 6.6 28.6 16.6 19.5 55.6 66.1 0.2 8.8
gromacs 6.2 21.8 2.4 4.1 38.9 88.3 2.8 10.4
sphinx3 4.4 16.4 2.4 2.6 39.9 86.6 4.9 9.9
bwaves 3.3 27.9 12.3 9.2 25.3 8.8 2.7 11.5

GemsFDTD 3.0 9.4 2.6 3.2 35.5 67.8 1.3 10.4
zeusmp 2.3 21.7 3.6 14.7 40.0 84.9 0.6 11.3

dealII 2.1 11.0 0.8 2.5 24.3 10.9 3.5 8.1
cactusADM 1.4 11.2 0.2 35.3 23.6 97.1 0.5 10.1

leslie3d 1.0 9.4 1.0 32.7 46.0 94.2 0.4 10.7

Table 2: SPEC 2006 Int and FP Metrics Sorted by Speedup.
• SPD: % Speedup (Geomean) Over All REF inputs for 4-wide
• PBC: % of Static Forward Branches Converted
• PDIH: Avg. % of Dynamic Instructions Hoisted Above Converted Branch
• ALPBB: Avg. Number of Loads Per Basic Block
• ASPCB: Avg. Stall Cycles Per Converted Branch
• PHI: Avg. % of Instructions Hoistable From Succeeding Basic Block
• MPPKI: Branch Mispredictions per Thousand Instructions
• PISCS: % Increase in Static Code Size

5.1. Integer Performance Improvement Analysis

Figures 8 through 11 show the performance improvement
on integer code from SPEC 2000 and SPEC 2006. Since
branch bias varies, sometimes significantly, depending on the
reference input we break out the best performing reference
input for each benchmark for both suites in Figures 9 and 11.

We find that performance improvements are largely corre-
lated to the following factors (quantified in Table 2):
• The number of forward branches that exhibit relatively

higher predictability than bias (PBC guided in-part by
MPPKI)

• the number of independent instructions, especially loads (i.e.
MLP), in the successor blocks that we can hoist (a function
of ALPBB, PDIH and PHI).

• tendency to stall at branch resolution (ASPCB)
• modest L1 D$ miss rate as we do not employ Runahead [10,

4] or iCFP [19]
• good I$ performance

Since the last two factors have been extensively analyzed for
SPEC (particularly in [23]) we omit them from the table. We
provide further analysis in the text below.

On balance, the 4-wide configuration tends to benefit the
most from our approach; the transformation can balance the
4-wide’s functional unit utilization to a greater degree than the
narrow 2-wide configuration, while we can rarely fully utilize
the 8-wide.

perlbench, h264ref and astar cluster together speedup wise
at the very high end: perlbench has a large number of can-
didate branches most with very good predictability, a low
D$ miss-rate and above average MLP. h264ref is similar to
perlbench with respect to L1 D$ behavior and predictability
but exposes more MLP. Even though astar is not highly pre-
dictable (averaging around 85%), its unbiased branches are
relatively highly predictable and the majority of those branches
meet our selection criteria. The first reference input for astar
also boasts a very low L1 D$ miss rate (around 2%); we see
a lower average performance improvement due to the second
reference input’s higher (more than 5%) L1 D$ miss rate.

A second performance class consists of omnetpp,
xalancbmk and sjeng. Despite having comparatively high
L1 D$ miss-rate, both omentpp and xalancbmk benefit from
having ample MLP in the successor blocks for the candidate
branches. sjeng is comparable in terms of candidate branches,
has very low L1 D$ and I$ miss-rates but has a noticeably
higher MPPKI which somewhat reduces performance.

The next performance class consists of gobmk, gcc and
mcf. gobmk and mcf both suffer from high MPPKI which
inhibits performance uplift; mcf also has a large number of
long latency misses which is difficult for code generator to
cover with useful instructions. In a similar vein, gcc has a
much higher than average ASCPB coupled with low PHI and
low ALPBB which makes it challenging to cover the branch
resolution stalls.

At the low-end of the performance spectrum are bzip2, hm-
mer and libquantum. bzip2 has slightly more eligible branches
than the other two. hmmer, despite being highly predictable
and very well behaved from a D$ perspective is dominated by
a large loop that contains very few candidate forward branches.
libquantum is in some respects more like an FP benchmark
and despite being highly predictable contains few candidate
forward branches and little in the way of hoistable loads.

The SPEC 2000 Integer suite tends to be more predictable
and better behaved L1 D$ and I$-wise than its successor as
reflected in the higher Geomean performance improvements
shown in Figures 10 and 11. For benchmarks present in both
SPEC 2006 and SPEC 2000, the relative performance im-
provements are decidedly mixed. For example, mcf in SPEC
2000, has significantly better performance than its SPEC 2006
counterpart due the former’s significantly higher branch pre-
dictability; the same observation applies to gcc. In contrast,
while the SPEC 2000 versions of bzip2 and perl have lower
MPPKI than the SPEC 2006 versions the SPEC 2006 versions

330

0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

Figure 8: SPEC 2006 Integer Performance: % Speedup Over Baseline Averaged Over ALL Reference Inputs
0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

Figure 9: SPEC 2006 Integer Performance: % Speedup Over Baseline for Top Performing Reference Input

0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

Figure 10: SPEC 2000 Integer Performance: % Speedup Over Baseline Averaged Over ALL Reference Inputs

0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

Figure 11: SPEC 2000 Integer Performance: % Speedup Over Baseline for Top Performing Reference Input

contain a greater number of unbiased branches which meet
our selection criteria.

crafty, eon, gap, parser and especially vortex all have a rela-
tively large number of eligible forward branches (greater than
22% on average), very good predictability, ample MLP and
L1 D$ miss rates which are typically 2.5% or lower. gzip has
comparable PBC but a significantly higher (2-3x) average L1
D$ miss rate. The lowest performing benchmarks, twolf and
vpr, have few (around 11% PBC) eligible forward branches
combined with higher than average L1 D$ miss rates.

5.2. Floating Point Performance Improvement Analysis

Figures 12 and 13 show the performance improvement at-
tained on the SPEC 2006 and SPEC 2000 Floating Point (FP)
benchmark suites respectively. FP benchmarks tend to be
highly predictable, have low I$/ D$ miss-rates, and good MLP.
However, these benchmarks also feature quite biased forward
branches and large basic blocks, which often permit the branch
resolution to be scheduled in such a way as to avoid stalling
the in-order. These latter characteristics tend to limit the ap-
plicability of our technique as reflected in the lower Geomean
speedups relative to Integer. Nevertheless, the very high pre-

dictability of FP benchmarks enables some noticeable perfor-
mance improvement when there are a large number of forward
branch candidates.

Referring to Figure 12, the top performers: wrf, povray,
tonto, gamess, calculix, soplex and milc have, on average,
greater than 29% of their forward branches eligible for trans-
formation with low MPPKI, and low ASPCB. The next class
of performers, namd, lbm and gromacs have, on average, only
20% of their forward branches eligible for transformation
with an average branch predictability of 95% and mid single
digit PDIH; performance uplift for lbm is inhibited by a high
ASPCB GemsFDTD, bwaves, sphinx3, and zeusmp continue
the downtrend in performance with fewer than 18% of their
forward branches eligible and low single digit PDIH. The re-
maining benchmarks in SPEC 2006 have either very low PBC
or very few hoistable instructions (PDIH).

Figure 13 shows the performance improvement for SPEC
2000 FP. Overall, this suite contain benchmarks which have
fewer eligible forward branches than SPEC 2006. Consider
the top performers: art, ammp and mesa. As we would expect
for FP, these benchmarks have high predictability, averaging
over 97%. However, these top performers have only, on av-

331

0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide
Figure 12: SPEC 2006 Floating Point Performance: % Speedup Over Baseline Averaged Over ALL Reference Inputs

0%
5%

10%
15%
20%
25%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

19

12
8

3
6

24

998

17

1112
10

18

12
8

3
6

23

998

16

10
12

8

16
12

8

2
5

20

686

15

0%

10%

20%

30%

astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk Geomean

121211

21

13
8

3
7

36

10
15

10

24

111210

20

12
8

3
7

35

10
14

10

22

1212
8

19

11
8

35

33

8
14

9

20

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

11
8

17

8

15
1313

10
1211

1313

4

11
8

17

8

15
1213

9
12

10
1313

4

10
7

17

7

14
1112

8

12
9109

4

0%

5%

10%

15%

20%

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geomean

1211

19

8

15
1313

11
15

11
1513

6

1110

18

8

15
1213

11
14

10

1513

6

109

17

7

15
1112

9

13

9

14

9

5

0%
6%

12%
18%
24%
30%

bwa
ves

cac
tusA

DM
calc

ulix dea
lII

gam
ess

Gem
sFD

TD
gro

mac
s lbm

lesl
ie3d milc nam

d
pov

ray
sop

lex
sph

inx3 ton
to wrf

zeu
smp

Geo
mea

n

7
2

27

12

5
7

23

77

1
643

10

2

7

2
4

7
2

26

11

4
7

22

67

1
543

9

2
7

13
7

2

25

11

45

22

66
1

443

9

2
7

13

0%

5%

10%

15%

20%

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Geomean

89

3
6

1

17

7

2
67

5

16

55

20

79

2
6

1

16

7

2

68
5

16

44

20

78

2
6

1

14

6
2

555

13

44

19

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

2"wide 4"wide 8"wide

Figure 13: SPEC 2000 Floating Point Performance: % Speedup Over Baseline Averaged Over ALL Reference Inputs

erage, less than 20% of their forward branches eligible for
transformation. The falloff in performance improvement is
much more pronounced for SPEC 2000 than SPEC 2006; wup-
wise and facerec, the next in overall performance, average only
15% eligible forward branches. The remaining benchmarks
exhibit little performance improvement due to only 10%, on
average, eligible forward branches.

5.3. Branch Predictor Sensitivity

The present work uses a gshare-derived conditional branch
predictor which is of modest complexity and represents a
reasonable trade-off between size and prediction accuracy
for an in-order machine. Since the benefit of our technique
improves with increased branch predictor accuracy, this con-
servative choice of branch predictors pessimizes our results.
To explore the sensitivity of our performance improvement to
prediction accuracy, we simulated a series of ever improving
conditional branch predictors, culminating in a 64-KB version
of ISL-TAGE described in [35]. We find that changing the
branch predictor primarily impacts four hard-to-predict inte-
ger benchmarks astar, sjeng, gobmk, mcf. In these
programs, the speedup from our technique improves (over the
baseline with the improved branch predictor) roughly 0.3%
for each 1% reduction in misprediction rate.

6. Transformation Side-Effects
Our transformation necessarily increases code size and will

typically increase the number of wrong-path instructions is-
sued. We examine the impact of these side-effects presently.

6.1. Code Size and Its Impact on Performance

Prior work has shown that SPEC 2000 and SPEC 2006 are re-
markably well behaved from an I$ perspective: miss-rates for
a 32KB I$ average 0.24% and 0.33% respectively [23]. The
degree to which the I$ miss rate actually impacts total perfor-
mance is a complicated matter and depends on the criticality
of those instructions whose fetch and subsequent processing

were delayed by the I$ miss. To greatly simplify, absent the
miss, would the instructions contained in the miss have even
been ready to execute once they entered the window and more
importantly, were these instructions on the critical path? If
not, then the I$ miss has minimal impact on performance; the
backend is otherwise fully engaged issuing the ancestors of
the instructions contained in the I$ miss [13].

It is particularly important to distinguish the impact that I$
misses have on the performance of out-of-orders (OOO) vs. in-
orders; the opportunity cost for the OOO is potentially greater
as the OOO may have had the backend resources available
to execute the younger instructions. In contrast, the in-order
is very unlikely to have had available issue slots due to the
frequent head-of-line blocking that in-orders experience [19];
our 4-wide, in-order shows virtually no overall performance
degradation (less than 0.5% Geomean for SPEC2k6) when the
32KB I$ capacity is reduced by 25% to 24KB. The average
static code size increase for our transformation (as shown in
the PISCS column in Table 2) is around 9% which is com-
parable to the average code size difference we have observed
when using ICC vs. LLVM.

One potential area of concern is the conjunction of branch
mispredictions and I$ misses, that is to say an I$ miss that
occurs when the front-end attempts to fetch the correct path
after a branch misprediction. Such a conjunction will almost
certainly degrade performance for an in-order; OOO archi-
tectures may be able to overlap the execution of right path
instructions prior to the mispredicted branch and the front-end
redirect. In fact, I$ misses and branch mispredictions may both
be symptoms of a large instruction working-set that causes
aliasing in the branch predictor. Fortunately, the probability of
an I$ miss coinciding with a branch misprediction is low; we
observed that around 15% of I$ misses occur under a branch
misprediction when running the baseline code on a 4-wide
in-order. For our experimental configuration, both the I$ miss
rate and the portion of I$ misses that occur under a branch
misprediction increased by less than 1% on average.

332

0%

0.75%

1.5%

2.25%

3%
as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
AD

M
ca

lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

s

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sl
ie
3d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g

so
pl
ex

sp
hi
nx

3

to
nt
o

w
rf

xa
la
nc

bm
k

ze
us
m
p

G
eo

m
ea

n

Figure 14: % Increase in Instructions Issued For 4-wide Experimental Configuration Vs. 4-wide Baseline

6.2. Efficiency

Our transformation must take care in targeting forward
branches with comparatively low predictability, particularly
those where we can form large basic blocks prior to the branch
resolution; minimizing the number of wrong path instructions
that the machine issues is critical to preserving the in-order’s
overall energy efficiency. While both our baseline and experi-
mental configurations can issue instructions in the shadow of
a conditional branch, the experimental configuration’s ability
to hoist these instructions before the branch resolution can
potentially result in a non-trivial increase in the number of
wrong-path instruction issued. As suggested by Figures 2 and
3, a number of unbiased forward branches do in fact have
comparatively low predictability. Fortunately, in these cases,
the size of the basic blocks we can form tends to be small
particularly in the case of less predictable integer code.

Figure 14 demonstrates the overall efficiency (as measured
by the increase in issued instructions) of our transformation
for the entire SPEC 2006 benchmark suite; SPEC 2006 is
generally less predictable than its predecessor and therefore
a good indicator of our overall efficiency. For floating point
benchmarks, overall predictability is very high which results
in a negligible increase in issued instructions. The increase in
the number of instructions issued for integer code is larger but
generally quite small on average (under 1%).

7. Related Work
A considerable amount of early work was devoted to re-

placing, minimizing or supplementing the perceived high area,
power and complexity of hardware dynamic branch predictors,
in addition to the mechanisms described in Section 2. One pro-
posed architecture chose not to employ branch prediction and
implemented the equivalent of variable branch delay slots by
separating branch resolution and control-flow change instruc-
tions into separate queues [3]. Another hardware/software
approach dynamically or statically partitions branch slices
from program slices into separate instruction streams which
are executed on dedicated cores [40, 33].

A recent work, "Control-Flow Decoupling" [36], focused
on code restructuring combined with specific HW support to
reduce branch mispredictions with an emphasis on hard-to-
predict loop branches; our technique focuses on exploiting
predictable (but unbiased) branches to generate better code.

The two techniques are orthogonal, and in fact "Control-Flow
Decoupling" could be used as a means to increase the number
of predictable, but unbiased branches and hence the speedup
from our technique.

Another avenue of research investigated the degree to which
hardware branch prediction could be replaced with software
by having the compiler synthesize a sequence of instructions
that used current register values to predict future branch out-
comes [29, 2]. Profile-based code transformations have been
developed to enhance static branch prediction schemes as an
alternative to history-based HW implementations [42].

Conversely, computer architecture researchers attempted
to co-opt compiler techniques (like predication) in hardware.
Dynamic predication in OOO without dedicated predication
support in the ISA was proposed [28]. Subsequent work ex-
amined the tension between static and dynamic predication
in the OOO with an increasing emphasis on the use compile-
time and run-time profiling to guide static and dynamic code
generation [27, 26, 25].

A recent processor, IBM’s Cell BE, used prepare-to-branch
and static branch prediction in the streaming processors (SPEs)
which operated on domain-specific workloads for which these
features are well suited [17, 15].

8. Conclusion
In-order superscalar processors are challenged by control-

dependencies coupled with code generators that can only ag-
gregate basic blocks based on branch bias rather than branch
predictability. This is a major limitation as branch predictabil-
ity is often significantly higher than branch bias. In this paper,
we describe a low-complexity, low-overhead, simple transfor-
mation, the decomposed branch transformation, that decom-
poses the prediction point of an unbiased but predictable for-
ward branch from the branch resolution point. This transforma-
tion provides a code generator with the ability to break control
dependencies, cover load-to-use latencies and find valuable
memory-level-parallelism. We showed how this transforma-
tion has little impact on I$ miss-rates, requires very modest
front-end and back-end hardware support and benefits both
integer and floating point benchmarks across the SPEC 2000
and SPEC 2006 benchmark suites.

333

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of

control dependence to data dependence,” in Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’83. New York, NY, USA: ACM, 1983, pp. 177–
189. [Online]. Available: http://doi.acm.org/10.1145/567067.567085

[2] D. I. August, D. A. Connors, J. C. Gyllenhaal, and W.-
m. W. Hwu, “Architectural support for compiler-synthesized
dynamic branch prediction strategies: Rationale and initial results,”
in Proceedings of the 3rd IEEE Symposium on High-Performance
Computer Architecture, ser. HPCA ’97. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 84–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=548716.822702

[3] E. Brunvand, “The nsr processor,” in System Sciences, 1993, Proceed-
ing of the Twenty-Sixth Hawaii International Conference on, vol. i, Jan
1993, pp. 428–435 vol.1.

[4] H. W. Cain and P. Nagpurkar, “Runahead execution vs. conventional
data prefetching in the ibm power6 microprocessor,” in ISPASS, 2010,
pp. 203–212.

[5] M. Charney, “Intel software development emulator.” [Online].
Available: https://software.intel.com/en-us/articles/pintool

[6] R. P. Colwell, R. P. Nix, J. J. O. Donnell, D. B. Papworth, and P. K.
Rodman, “A vliw architecture for a trace scheduling compiler,” in
Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct.
1987, pp. 180–192.

[7] B. Dally, “"project denver"processor to usher in a new era of comput-
ing,” Jan. 2011. [Online]. Available: http://blogs.nvidia.com/blog/2011/
01/05/project-denver-processor-to-usher-in-new-era-of-computing

[8] J. W. Davidson and D. B. Whalley, “Reducing the cost of
branches by using registers,” in Proceedings of the 17th Annual
International Symposium on Computer Architecture, ser. ISCA ’90.
New York, NY, USA: ACM, 1990, pp. 182–191. [Online]. Available:
http://doi.acm.org/10.1145/325164.325138

[9] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing Software:
Using Speculation, Recovery, and Adaptive Retranslation to Address
Real-life Challenges,” in Proceedings of the International Symposium
on Code Generation and Optimization, 2003, pp. 15–24.

[10] J. Dundas and T. Mudge, “Improving data cache performance by
pre-executing instructions under a cache miss,” in Proceedings of
the 11th International Conference on Supercomputing, ser. ICS ’97.
New York, NY, USA: ACM, 1997, pp. 68–75. [Online]. Available:
http://doi.acm.org/10.1145/263580.263597

[11] J. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan, “Super-
scalar instruction execution in the 21164 alpha microprocessor,” Micro,
IEEE, vol. 15, no. 2, pp. 33–43, Apr 1995.

[12] M. Farrens and A. Pleszhun, “Implementation of the pipe processor,”
Computer, vol. 24, no. 1, pp. 65–70, Jan 1991.

[13] B. A. Fields, S. Rubin, and R. Bodik, “Focusing processor policies
via Critical-Path prediction,” in Proceedings of the 28th Annual
International Symposium on Computer Architecture, Jul. 2001, pp.
74–85. [Online]. Available: http://www.cs.wisc.edu/~bodik/research/
isca01a.pdf

[14] J. A. Fisher, “Trace scheduling: a technique for global microcode
compaction,” vol. 30(7), pp. 478–490, 1981.

[15] J. Fritts and W. Wolf, “Evaluation of static and dynamic scheduling
for media processors,” in Proceedings of the 2nd Workshop on Media
Processors and DSPs, ser. Micro ’00, 2000.

[16] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter,
and H. C. Young, “Pipe: A vlsi decoupled architecture,” SIGARCH
Comput. Archit. News, vol. 13, no. 3, pp. 20–27, Jun. 1985. [Online].
Available: http://doi.acm.org/10.1145/327070.327117

[17] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in cell’s multicore architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10–24, Mar. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MM.2006.41

[18] J. Hennessy, N. Jouppi, F. Baskett, T. Gross, and J. Gill,
“Hardware/software tradeoffs for increased performance,” in Proceed-
ings of the First International Symposium on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS
I. New York, NY, USA: ACM, 1982, pp. 2–11. [Online]. Available:
http://doi.acm.org/10.1145/800050.801820

[19] A. Hilton, S. Nagarakatte, and A. Roth, “icfp: Tolerating all-level cache
misses in in-order processors,” IEEE Micro, vol. 30, no. 1, pp. 12–19,
Jan. 2010. [Online]. Available: http://dx.doi.org/10.1109/MM.2010.20

[20] P. Y. T. Hsu and E. S. Davidson, “Highly concurrent scalar process-
ing,” in Proceedings of the 13th Annual International Symposium on
Computer Architecture, ser. ISCA ’86. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1986, pp. 386–395. [Online]. Available:
http://dl.acm.org/citation.cfm?id=17407.17401

[21] W. M. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery, “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation,” Journal of Supercomputing,
vol. 7, no. 1, pp. 229–248, Mar 1993. [Online]. Available:
http://www.crhc.uiuc.edu/IMPACT/ftp/journal/jsc.superblock.93.pdf

[22] Intel, “Intel itanium processor 9500 series refence manual. software
development and optimization guide,” Intel Technical Manual, 2012.

[23] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation: A pin-based memory characteriza-
tion of the spec cpu2000 and spec cpu2006 benchmark suites.” [Online].
Available: http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf

[24] V. Kathail, M. Schlansker, and B. Rau, “HPL PlayDoh architecture
specification: Version 1.0,” Hewlett-Packard Laboratories, Tech. Rep.
HPL-93-80, Feb. 1993.

[25] H. Kim, J. Joao, O. Mutlu, and Y. N. Patt, “Profile-assisted
compiler support for dynamic predication in diverge-merge processors,”
in Proceedings of the International Symposium on Code Generation
and Optimization, ser. CGO ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 367–378. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2007.31

[26] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt, “Diverge-merge
processor: Generalized and energy-efficient dynamic predication,”
IEEE Micro, vol. 27, no. 1, pp. 94–104, Jan. 2007. [Online]. Available:
http://dx.doi.org/10.1109/MM.2007.9

[27] H. Kim, O. Mutlu, J. Stark, and Y. Patt, “Wish branches: combining
conditional branching and predication for adaptive predicated exe-
cution,” in Microarchitecture, 2005. MICRO-38. Proceedings. 38th
Annual IEEE/ACM International Symposium on, Nov 2005, pp. 12
pp.–54.

[28] A. Klauser, T. Austin, D. Grunwald, and B. Calder, “Dynamic ham-
mock predication for non-predicated instruction set architectures,” in
Parallel Architectures and Compilation Techniques, 1998. Proceedings.
1998 International Conference on, Oct 1998, pp. 278–285.

[29] S. Mahlke and B. Natarajan, “Compiler synthesized dynamic branch
prediction,” in Microarchitecture, 1996. MICRO-29.Proceedings of the
29th Annual IEEE/ACM International Symposium on, Dec 1996, pp.
153–164.

[30] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using the
hyperblock,” in In Proceedings of the 25th International Symposium
on Microarchitecture, 1992, pp. 45–54.

[31] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the
dominant out-of-order performance advantage: Is it speculation
or dynamism?” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’13. New York, NY,
USA: ACM, 2013, pp. 241–252. [Online]. Available: http:
//doi.acm.org/10.1145/2451116.2451143

[32] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
IEEE Micro, vol. 23, no. 2, pp. 44–55, Mar. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MM.2003.1196114

[33] A. S. Nadkarni and A. Tyagi, “A trace based evaluation of speculative
branch decoupling,” in Computer Design, 2000. Proceedings. 2000
International Conference on. IEEE, 2000, pp. 300–307.

[34] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles,
“Hardware atomicity for reliable software speculation,” in Proceedings
of the 34th International Symposium on Computer Architecture, 2007,
pp. 174–185.

[35] A. Seznec, “A new case for the tage branch predictor,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-44. New York, NY, USA: ACM,
2011, pp. 117–127. [Online]. Available: http://doi.acm.org/10.1145/
2155620.2155635

[36] R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decoupling,”
in Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-45. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 329–340. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2012.38

[37] G. Shobaki, K. Wilken, and M. Heffernan, “Optimal trace
scheduling using enumeration,” ACM Trans. Archit. Code Optim.,
vol. 5, no. 4, pp. 19:1–19:32, Mar. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498690.1498694

334

[38] M. Smotherman, “Documentation project for the IBM ACS-1
Supercomputer,” Jun. 2010. [Online]. Available: http://www.cs.
clemson.edu/~mark/acs.html

[39] A. Srivastava and A. Despain, “Prophetic branches: a branch architec-
ture for code compaction and efficient execution,” in Microarchitecture,
1993., Proceedings of the 26th Annual International Symposium on,
Dec 1993, pp. 94–99.

[40] A. Tyagi, H.-C. Ng, and P. Mohapatra, “Dynamic branch decoupled
architecture,” in Computer Design, 1999.(ICCD’99) International Con-
ference on. IEEE, 1999, pp. 442–450.

[41] W. J. Watson, “The ti asc: A highly modular and flexible super
computer architecture,” in Proceedings of the December 5-7, 1972,
Fall Joint Computer Conference, Part I, ser. AFIPS ’72 (Fall, part I).
New York, NY, USA: ACM, 1972, pp. 221–228. [Online]. Available:
http://doi.acm.org/10.1145/1479992.1480022

[42] C. Young and M. D. Smith, “Improving the accuracy of
static branch prediction using branch correlation,” in Proceedings
of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VI.
New York, NY, USA: ACM, 1994, pp. 232–241. [Online]. Available:
http://doi.acm.org/10.1145/195473.195549

[43] H. C. Young, “Code scheduling methods for some architectural
features in pipe,” Microprocessing and Microprogramming, vol. 22,
no. 1, pp. 39 – 63, 1988. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0165607488900063

[44] M. Yourst, “Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in Performance Analysis of Systems Software,
2007. ISPASS 2007. IEEE International Symposium on, April 2007, pp.
23–34.

335

