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ABSTRACT
This paper investigates randomization on asynchronous exams
as a defense against collaborative cheating. Asynchronous
exams are those for which students take the exam at different
times, potentially across a multi-day exam period. Collab-
orative cheating occurs when one student (the information
producer) takes the exam early and passes information about
the exam to other students (the information consumers) that are
taking the exam later. Using a dataset of computerized exam
and homework problems in a single course with 425 students,
we identified 5.5% of students (on average) as information
consumers by their disproportionate studying of problems that
were on the exam. These information consumers (“cheaters”)
had a significant advantage (13 percentage points on average)
when every student was given the same exam problem (even
when the parameters are randomized for each student), but that
advantage dropped to almost negligible levels (2–3 percentage
points) when students were given a random problem from a
pool of two or four problems. We conclude that randomization
with pools of four (or even three) problems, which also contain
randomized parameters, is an effective mitigation for collabo-
rative cheating. Our analysis suggests that this mitigation is
in part explained by cheating students having less complete
information about larger pools.
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INTRODUCTION
Exams are one of the most widely used methods for student
assessment in college education, especially in introductory
courses. However, at many universities these courses are large
(e.g., 200+ students), and running exams for them can be very
demanding [8, 6, 15]. One alternative to paper-and-pencil
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Figure 1. A typical collaborative cheating process where information
producers take an exam before information consumers and pass the in-
formation about the exam to the information consumers.

exams that has the potential to improve the exam experience
for both faculty and students is computer-based testing [3, 10].
The major benefits of computer-based testing are that it greatly
reduces the overhead of running exams and broadens the kinds
of problems that can be automatically graded [15]. To handle
computer-based exams for large enrollment classes with a
small testing center, running the exams asynchronously (i.e.,
allowing students to choose their exam time within a given
exam period) has been proposed as a solution [5, 16]. This
asynchronous strategy also gracefully accommodates student
exam time conflicts.

One major drawback of running exams asynchronously is its
potential to facilitate collaborative cheating. In fact, previous
studies have found that “learning what is on a test from some-
one who has already taken it” is the most frequently reported
cheating method among college students who have admitted
to cheating [7, 13]. These results from face-to-face (i.e., non-
online) classes whose exams may not even be asynchronous
suggest that collaborative cheating is a serious issue that asyn-
chronous computerized exams need to address. In contrast, a
previous study [4] examined a dataset of asynchronous com-
puterized exams and found that on average students who take
exams later tend to get lower scores. This result suggests that
over the entire student population as a whole the effect of col-
laborative cheating is overwhelmed by other factors. However,
it did not address how advantageous collaborative cheating is
for those students who did cheat or how we can effectively
mitigate collaborative cheating.

In this paper, we define collaborative cheating specifically as
a cheating activity where information about exam content is
passed from a student who has taken the exam to a student
who has not yet taken the exam. We label such students as in-
formation producers and information consumers, respectively.
As depicted in Figure 1, the producers take an exam earlier
than the consumers and pass the information about the exam
to the consumers. A consumer could receive information from
multiple producers, and a consumer could also be a producer
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for a later consumer. With the information, the consumers
study accordingly and then take the exam at a later time, thus
gaining an unfair advantage over the rest of the class. This
paper will focus on information consumers since they are the
subgroup of cheating students directly benefiting from collab-
orative cheating and they are also the subset that we are able
to identify in our dataset. We will refer to them as cheaters for
simplicity throughout the rest of the paper.

This study is possible because of a dataset of computerized
homeworks and exams that has three special fortuitous fea-
tures. The first special feature is that a subset of the homework
problems were also present on subsequent exams. We make
use of this feature to look for students who disproportionately
study the homework problems that are on the exam, indicating
that they have likely received information about the exam prob-
lems. The second special feature is that each student only had
a subset of these problems on their exams, where this subset
was chosen randomly from problem pools of varying sizes.
This variation in pool size allowed us to see how the amount
of randomization affected student practice and performance.
The third special feature is that there were other problems
which only appeared on the exams, which we use as a control
variable for a difference-in-differences analysis to estimate
true effect sizes. Since problems are shared between exams
and homeworks, this scenario is likely the “best condition” for
collaborative cheating as students can study these problems if
they have information about which ones are on the exam.

This paper is organized as follows. In the Data Description
section, we discuss the course context of this study and the data
we analyzed. In Cheater Classification, we describe a simple
method to identify students who are information consumers
by observing students’ homework behaviors. In Analysis of
Exam Problem Scores, we show that cheaters’ advantage can
be greatly reduced by introducing randomization of problem
selection in addition to random problem parameterizations. In
Analysis of Problem Coverage, we define a coverage metric
and show that randomized problem selection makes it harder
for cheaters to gain a large coverage advantage, which partially
explains why randomized problem selection works. We finish
with Limitations and Discussion and Conclusions.

DATA DESCRIPTION
The data was collected at a large public research university
during the Spring 2017 semester. The particular course which
we studied is an introductory undergraduate mechanical engi-
neering course of 425 students. The course managed all 14
homework assignments via the PrairieLearn system. All 13
exams in the course were asynchronous computerized exams
administrated via the same PrairieLearn system and held in the
Computer-Based Testing Facility (CBTF). With IRB approval,
we obtained all 363,847 homework records outside the CBTF
as well as all 56,486 exam records in the CBTF for the class.

Computer-Based Testing Facility
The CBTF [15] is a computer lab with 85 seats for students
and another 4 seats in a reduced distraction environment for
students registered with the disability resource center. Each of
the computers is outfitted with a privacy screen that prevents

test takers from reading the screens of neighboring computers,
and the network and file systems are strictly controlled. The
facility is open and proctored 10–12 hours a day, 7 days a week
to accommodate two to four thousand exams per week [16].
Students are not permitted to take written notes, photos, or
other records into or out of the exam room. At their scheduled
exam time, students have their identity checked by a proctor
and are randomly assigned to a computer to deter cheating
during an exam seating.

Exams within the CBTF are typically administrated as fol-
lows [16]: Classes assign a 3–5 day period for the students to
take an exam depending on the class size; longer exam peri-
ods are used during finals week. Students are free to reserve
any time during the exam period, provided that there are slots
available at that time. Sign-ups for exams typically begin two
weeks before the exam period begins. Generally, the exam
periods of exams from different classes overlap each other,
and the CBTF is almost always running a number of distinct
exams concurrently.

Homework data from PrairieLearn
PrairieLearn [14] is an online problem posing system that per-
mits the specification of problem generators, each of which
is capable of generating randomly parameterized problem in-
stances. Problem generators are typically written to generate
problem instances with different numeric values or other small
changes so that the correct answer is different. This allows
students to practice any particular type of problem indefinitely
with immediate feedback on the correctness of their attempts.

Each homework assigned in PrairieLearn consists of a set
of problem generators. Students need to answer problem in-
stances generated by a problem generator to earn points. Each
problem instance can only be attempted once. A new problem
instance will be generated after each attempt, regardless of
the correctness of the submitted answer. For the course under
study, each homework provided a large set of problems, but
students could get full points on the homework by answering
only a subset (often around half) of the provided problems.
The course allowed students to access any homework and prac-
tice with the problem generators after homework deadlines.

Each of the homework records has the form (problem id, stu-
dent id, date). The problem id is a unique identifier for each
problem generator. The student id is a unique identifier for a
student. The date is a timestamp of when the student attempted
a problem instance generated by the problem generator. For
this analysis, it isn’t important what the scores on practice
records are, thus score is not a part of each record.

The homework data collected has 14 homework assignments
and 98 unique problem generators. On average, each home-
work has 7 problem generators, and none of the problem
generators was repeated in multiple homework assignments.

Exam data from PrairieLearn
Each exam in PrairieLearn consists of a set of problem slots
where each slot has a corresponding pool of problem gener-
ators. For each student, PrairieLearn will randomly select a
generator for each slot and then randomly generate a problem
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Figure 2. Five categories of problem generators with respect to Exam 1.

instance with each selected generator. Once generated, the
set of problem instances is fixed, and students have to answer
these instances to earn points. The use of problem genera-
tors on exams makes cheating harder, as students get random
problem instances whose answers are unlikely the same as
that of other students. The course allowed students to have
multiple attempts at each problem instance with a partial-point
schedule controlled on a per problem slot basis. For example,
a schedule of [100%,70%,50%,0%] for a problem generator
means a student will get 100% credit on that problem instance
if the first attempt is correct. The student will get 70% of the
points if the first attempt is wrong but the second attempt is
correct and so forth.

The course exams are a mixture of problem generators from
preceding homeworks and problem generators that students
have not previously seen. Specifically, for each exam, we
can categorize all of the problem generators on the exam and
previous homeworks assignments on the same topic into the
following five categories: (1) inaccessible, (2) accessible pool
size 1, (3) accessible pool size 2, (4) accessible pool size 4
and (5) accessible not-on-exam. Specifically, inaccessible
problem generators cannot be accessed outside the exam and
will appear in every student’s exam. Accessible generators can
be accessed outside the exam, meaning that these generators
appeared in the corresponding set of homework assignments.
Pool size k means the generator belongs to a problem slot
whose pool contains k problem generators. In an accessible
pool size of 4, one problem generator of the 4 would be used
to create a problem instance on a student’s exam. The different
pool sizes essentially introduce different level of randomiza-
tion in problem selection. On-exam and not-on-exam indicate
whether the problem generator is on the exam. Since the first
four categories of problem generators are on the exam while
only the last one is not, we omitted “on-exam” for the first four
categories for simplicity. An illustrative example of the five
categories is shown in Figure 2. This particular arrangement
of problem generator selection was never made public, though
throughout the semester students could have learned that some
problem generators are shared between homeworks and ex-
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Figure 3. The potential cheating period of student i on an exam.

ams, and that everyone gets slightly different set of problem
generators.

Each of the exam records has the form (exam id, problem id,
category, student id, score, date). The problem id, student
id, and date are the same as for the homework data. The exam
id is a unique identifier for each exam. The category is one
of the five categories defined above; since these records are
about exam problems, the accessible not-on-exam category
will not appear in any of these records. The score is a real
number ranging from 0 to 100, indicating the percentage of
points the student got based on the partial-point schedule of
the problem slot.

The exam data collected for the course has a total of 13 exams
which students could take and 98 unique problem generators.
57 out of the 98 problem generators did appear in homework.
On average, each exam uses 11 problem generators and some
of the problem generators were repeated in multiple exams.
Out of all exams, there were 54 problem generators catego-
rized as inaccessible, 41 categorized as accessible pool size 1
(41 problem slots of pool size 1), 16 categorized as accessible
pool size 2 (8 problem slots of pool size 2), 32 categorized
as accessible pool size 4 (8 problem slots of pool size 4), and
195 categorized as accessible not-on-exam. Note that a few
problem generators were re-used in different roles on different
exams, so the total of the previous numbers is more than the
total number of problem generators.

CHEATER CLASSIFICATION
By the nature of collaborative cheating, cheaters must use
the information about the exam that they have obtained if
they are to get an advantage. If some of the exam problem
generators were accessible through the homework system, it is
natural for the cheaters to focus on practicing these generators
in PrairieLearn before their exams. Thus they are likely to
disproportionately practice problem generators which are on
the exams as compared with the rest of the class.

Specifically, for exam x and student i who has taken the exam,
we only consider practice records that are within student i’s
potential cheating period of exam x. We define the potential
cheating period of student i on exam x as the time period
between when the earliest student started exam x and when
student i started exam x, as depicted in Figure 3. Essentially,
this is the time period when information of exam x might be
available to student i and student i can practice strategically
based on this information. We denote the number of student
i’s practice records during student i’s potential cheating period
of exam x as nx,i and the number of practice records among
the nx,i practice records whose problem generator was part of
exam x as kx,i.
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Figure 4. The upper plot shows the percentage of students classified as
cheaters for each exam. The horizontal line represents the mean, which
is 5.5%. The lower plot shows the number of students who have taken
each exam. Exams with even numbers are second chance exams.

Using the plain fraction kx,i/nx,i to classify student i as a
cheater on exam x is problematic since a student with a frac-
tion of 100% but who has only attempted a single problem
instance is likely due to chance, whereas a student with the
same fraction who has attempted 1,000 problem instances is
very likely to be cheating. Thus we used binomial distributions
rather than plain fractions to classify students as cheaters on
a per exam basis. To do this we first computed the average
fraction of attempted problem instances that were generated
by problem generators that were on exam x as follows:

px =
∑i kx,i

∑i nx,i
, (1)

where px is the average probability that a problem generator
practiced by a student is on the exam for exam x; both sums
are over students who have taken exam x.

With px computed, we assume that a non-cheating student
i will have a number of practice attempts that were on on-
exam problem generators (kx,i) distributed according to a bi-
nomial distribution with number nx,i and success probability
px. Thus we define a random variable Kx,i that follows this
binomial distribution for exam x and student i. If a student’s
kx,i greatly exceeds what is predicted by this distribution, that
is, if P(Kx,i ≥ kx,i) is less than some threshold, we classify
student i as a cheater for exam x, otherwise we classify stu-
dent i as a non-cheater for exam x. The threshold used in
this study is 0.0001, which we would expect to give one false
positive per 10,000 students and our population is only 425
students. We will discuss potential issues with this method in
the Limitations section. Note that this method will not classify
students who are only information producers as cheaters. This
is actually desired for the following analysis since information

producers would not likely benefit from collaborative cheating
for exams that they took earlier than their collaborators.

With the above method, we classified students as a cheater or
non-cheater on a per exam basis and computed the percentage
of students that were classified as cheaters for each exam1.
We plotted the percentage of cheaters for each exam and the
number of students who have taken each exam in Figure 4.
Even-numbered exams are second chance exams that students
can take to partially replace their grades on the preceding first
chance exam (which is odd numbered). Exam 13 is the final
exam. As the figure shows, none of the exams has more than
10% of the students classified as cheaters. The mean is 5.5%
(95% CI [4.2%, 6.8%]), which is shown as the horizontal solid
line in the upper plot of the figure.

ANALYSIS OF EXAM PROBLEM SCORES
With the cheaters and non-cheaters labeled by the method
in the previous section, we wanted to study what advantage
cheaters have on exam problem scores. For this analysis, we
will study the four categories of problem generators that are
on the exam.

Naive method and result
One naive way to study the impact of randomized problem
selection on exam problem scores is to compare the mean score
of cheaters to that of non-cheaters. To do this, we divided exam
records into eight groups based on the category of each record
and whether the student associated with the record is classified
as a cheater on that exam. We then computed the mean score
for each group and plotted the results with 95% confidence
intervals in Figure 5.

Most notably, Figure 5 shows cheaters performing about 13
percentage points better than non-cheaters when every student
was given the same (i.e., pool size 1) accessible problem gen-
erator. For larger (accessible) pools this difference is shown
to drop to within 2 percentage points. This suggests that in-
creasing pool size makes collaborative cheating less effective.
Finally, it shows cheaters performing about 2 percentage points
worse than non-cheaters on inaccessible problem generators.

However, to estimate the true score advantage of cheaters, we
shouldn’t just look at the raw differences at each pool size.
This would tend to underestimate the advantage of cheating,
because the cheaters seem to be slightly weaker on average
as indicated by their lower mean performance on inaccessible
problem generators. We attempt to correct for this in the next
section.

Difference in differences method
To obtain a more precise estimate of cheaters’ score advantage
and confidence interval, we employed the difference in differ-
ences method [1, 2]. Difference in differences is a statistical
method frequently used to study the differential effect of an
experimental condition on two groups that differ in one impor-
tant attribute. It first takes the measurements of two groups

1Only students who have taken the exam were included in the cal-
culation for each exam, since some students missed some of the
exams.
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under a control condition. It then takes measurements of the
two groups under an experimental condition. The difference
in differences effect size δ is then calculated as

δ = (avg measure of group A under experimental condition
−avg measure of group A under control condition)

−(avg measure of group B under experimental condition
−avg measure of group B under control condition).

(2)
An illustrative example is shown in Figure 6. Under the control
condition, group A’s mean measure of interest is α while group
B’s mean measure of interest is β higher than that of group A.
Under the experimental condition, group A’s mean measure
of interest increases by γ while group B’s mean measure of
interest increases by δ in addition to γ . This δ is what the
difference in differences method is trying to estimate.

The difference in differences method is often framed as a
linear regression with ordinary least squares over all of the
measurements as follows:

m = α +βb+ γe+δbe, (3)

where m,b,e are observed values from each measurement,
defined as follows:

• m: the measure of interest of the measurement,
• b: 1 if the measurement is associated with group B, 0 other-

wise,
• e: 1 if the measurement is under experimental condition, 0

otherwise,

and α,β ,γ,δ are the coefficients that we want to estimate,
with their meanings depicted in Figure 6. The major benefit
of framing difference in differences as linear regression is
that confidence intervals of the coefficients can be obtained
conveniently from the regression.

In our case, the two groups are cheaters and non-cheaters
and the measure of interest is their score. We treat inacces-
sible problem generators as a control condition, since it is
less likely to be affected by collaborative cheating. We treat
accessible problem generators with a specific pool size as an
experimental condition. We will discuss the appropriateness
of the difference in differences method for this analysis as well
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Figure 6. An example of difference in differences. The difference in
differences method will capture the value δ , which is the differential
effect between group A and group B under the experimental condition.

as this particular setup of control and experimental conditions
in the Limitations section. The linear regression we study for
difference in differences can thus be specified as follows:

z = α +βc+ γ1s1 + γ2s2 + γ4s4 +δ1cs1 +δ2cs2 +δ4cs4,
(4)

where z,c,s1,s2,s4 are observed values from each exam record,
which has the format (exam id, problem id, category, student
id, score, date) as described in the Data Description section.
These observed values are defined as follows:

• z: the score of the record,
• c: 1 if the student associated with the record is classified as

a cheater on the exam, 0 otherwise,
• sk: 1 if the problem generator associated with the record is

accessible pool size k, 0 otherwise,

and α,β ,γ1,γ2,γ4,δ1,δ2,δ4 are the coefficients that we want
to compute, which can be interpreted as follows:

• α : the mean score of non-cheaters on inaccessible problem
generators,
• β : the mean score difference between cheaters and non-

cheaters on inaccessible problem generators,
• γk: the mean score difference between inaccessible problem

generators and accessible pool size k generators for non-
cheaters,
• δk: the additional mean score difference that cheaters have

between inaccessible problem generators and accessible
pool size k generators.

Difference in differences result and discussion
Since we mainly care about cheaters’ mean score advantage
over non-cheaters on the three different pool sizes, δ1,δ2 and
δ4 are the coefficients that we will mainly focus on. The de-
tailed results of all of the coefficients and a visualization are
available in the Appendix for interested readers. We plotted
δ1,δ2 and δ4 with 95% confidence intervals in Figure 7. As
the figure shows, cheaters have an advantage of about 13 per-
centage points over non-cheaters on accessible pool size 1
problem generators. However, this advantage rapidly dimin-
ishes to around 3 percentage points when pool size is increased
to 2, and it further diminishes to 2 percentage points at pool
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Figure 7. Regression coefficients that can be interpreted as cheaters’
mean score advantage over non-cheaters on accessible pool size 1, 2 and
4 problem generators. The error bars correspond to 95% confidence
intervals of the regression coefficients.

size 4. One subtlety to notice is that the mean score of non-
cheaters on accessible pool size 2 problem generators is as
high as 89 percentage points. This is due to random chance
since the instructors of the course did not try to balance the
difficulty of problem generators across different pools. The
high mean score for pool size 2 suggests that the potential ad-
vantage of collaborative cheating is limited due to the ceiling
effect [12], thus 3 percentage points is likely an underestimate
of cheaters’ advantage on pool size 2. We will discuss this
issue in more detail in the Limitations section.

The above result suggests that increasing randomness in prob-
lem selection substantially helps to neutralize the advantage
of collaborative cheating. Two hypotheses as to why it worked
are: (1) larger pool sizes make it harder for cheaters to gather
information about exam problems, and (2) cheaters have dif-
ficulty taking advantage of knowledge about the problems in
larger pools, perhaps because it is hard to memorize solutions
to more problems even if they maintain the same information
advantage. We will explore hypothesis (1) in the next section.

ANALYSIS OF PROBLEM COVERAGE
To study the hypothesis that larger pool sizes make it harder
to obtain complete information about exams, we introduce the
notion of coverage as a measure of the amount of information
a student might know. For exam x and student i, we compute
student i’s coverage over a category of problem generators q
as follows:

coverage(x, i,q) =
`x,i

|q|
, (5)

where |q| is the number of unique problem generators in q and
`x,i is the number of unique problem generators among q that
student i has practiced during student i’s potential cheating
period for exam x. For example, a student who achieves
50% coverage on the set of accessible pool size 4 problem
generators for an exam has practiced half of these generators
at least once during the student’s potential cheating period of
the exam. Note that this definition of coverage is somewhat
orthogonal to our cheater classification: a student that only
studies exam questions will be classified as a cheater even if
the student only has partial information, and a student that
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Figure 8. Mean coverage of each problem generator category for
cheaters and non-cheaters. The error bars correspond to 95% confi-
dence intervals of the means.

studies every question equally (i.e., 100% coverage) will be
classified as a non-cheater.

With the above definition of coverage, we derive a record
of the form (exam id, category, student id, coverage) for
every exam, student and category of problem generator. The
coverage is a real number ranging from 0 to 100, representing
the coverage percentage. The exam id, category, and student
id are the same as defined previously. Since students cannot
practice inaccessible problem generators, we will only study
the last four categories of problem generators defined in the
Exam data from the PrairieLearn section.

Naive method and result
With the same cheater and non-cheater labels used in the
previous analysis, we computed the mean coverage of all the
coverage records of each category of problem generator for
cheaters and non-cheaters and plotted the results with 95%
confidence intervals in Figure 8. As the figure shows, cheaters
have lower mean coverage on accessible problem generators
that are not on the exam, and they have higher mean coverage
for accessible on-exam problem generators of every pool size.
However, the difference in means between cheaters and non-
cheaters decreases as pool size increases, suggesting that it
is harder for cheaters to gather information about accessible
on-exam problem generators with larger pool sizes.

As in the previous analysis of problem score advantages, this
naive method probably underestimates the effect size because
cheaters have a lower baseline coverage on accessible not-on-
exam problem generators. We attempt to correct for this in the
next section using a similar difference-in-differences analysis.

Difference in differences method
To obtain a good estimate of cheaters’ coverage advantage
and confidence interval, we again employed the difference in
difference method. We treat accessible not-on-exam problem
generators as a control condition and accessible problem gen-
erators with a specific pool size as an experimental condition.
We will discuss limitations of this setup in the Limitations
section. The linear regression we study thus be specified as
follows:

z̃ = α̃ + β̃ c̃+ γ̃1s̃1 + γ̃2s̃2 + γ̃4s̃4 + δ̃1c̃s̃1 + δ̃2c̃s̃2 + δ̃4c̃s̃4,
(6)



Accessible
pool size 1

Accessible
pool size 2

Accessible
pool size 4

−10

0

10

20

30

40

50

60

70
M

ea
n

co
v
er

a
g
e

a
d

v
a
n
ta

g
e

o
f

ch
ea

te
rs

,
δ̃ k

/
%

Figure 9. Regression coefficients that can be interpreted as cheaters’
mean coverage advantage over non-cheaters on accessible pool size 1, 2
and 4 problem generators. The error bars correspond to 95% confidence
intervals of the regression coefficients.

where z̃, c̃, s̃1, s̃2, s̃4 are observed values from each coverage
record, defined as follows:

• z̃: the coverage of the record,
• c̃: 1 if the student associated with the record is classified as

cheater on the exam, 0 otherwise,
• s̃k: 1 if the category of problem generators associated with

the record is accessible pool size k, 0 otherwise,

and α̃, β̃ , γ̃1, γ̃2, γ̃4, δ̃1, δ̃2, δ̃4 are the coefficients that we want
to compute, which can be interpreted as follows:

• α̃ : the mean coverage of non-cheaters on accessible not-on-
exam problem generators,
• β̃ : the mean coverage difference between cheaters and non-

cheaters on accessible not-on-exam problem generators,
• γ̃k: the mean coverage difference between accessible not-

on-exam problem generators and accessible pool size k
generators for non-cheaters,
• δ̃k: the additional mean coverage difference that cheaters

have between accessible not-on-exam problem generators
and accessible pool size k generators.

Difference in differences result and discussion
We will focus on δ̃1, δ̃2 and δ̃4 since we want to know how pool
size affects cheaters’ coverage advantage over non-cheaters.
The detailed results of all of the coefficients and a visualization
are available in the Appendix for interested readers. We plotted
δ̃1, δ̃2 and δ̃4 with 95% confidence intervals in Figure 9. As
the figure shows, cheaters’ coverage of pool size 1 problem
generators is 43 percentage points higher than that of non-
cheaters. This advantage diminishes to around 22 percentage
points when pool size is increased to 2 and it further diminishes
to about 17 percentage points at pool size 4, although this is
still significantly positive.

This suggests that the large reduction in cheaters’ score advan-
tage at the bigger pool sizes is partially due to the fact that
cheaters have less complete information about exam problems
drawn from larger pools (hypothesis 1), but it also seems that
larger pools make it harder for cheaters to effectively utilize
this advantage (hypothesis 2), perhaps because it is harder to
memorize the increased number of problems.

LIMITATIONS
As the study in this paper is quasi-experimental using a pre-
existing dataset, it has a number of limitations. We discuss
seven specific limitations below. The first five are experimental
limitations, and the final two relate to the generalizability of
our results.

The first limitation relates to our method of cheater identifica-
tion. We assumed that non-cheaters chose practice problem
instances at random, resulting in a binomial distribution for
the number of on-exam problem instances chosen. In fact,
problem instance choices were probably somewhat correlated
as students may have attempted several instances for the same
problem generator in a row. To mitigate this, we chose a con-
servative cutoff of 0.0001 for identifying likely cheaters (i.e.,
P(Kx,i ≥ kx,i)< 0.0001). To test whether this is an important
limitation we re-ran our analysis with a range of cutoff values
from 0.000001 to 0.05. In all cases we found the same trend
where increasing pool size reduces cheaters’ exam score ad-
vantage and coverage advantage, though the exact numbers
differed somewhat. From this we conclude that our analysis
is not very sensitive to the details of our cheater identification
scheme.

The second limitation draws from the issue introduced by the
ceiling effect [12]. As observed in the analysis of exam prob-
lems score, the mean score of non-cheaters on accessible pool
size 2 problem generators is about 89 percentage points, higher
than for the other pool sizes. This high mean score limits the
advantage cheaters could gain, because there is a score ceiling
at 100%, and it is likely that we are thus underestimating the
advantage of cheating with a pool size of 2. This limitation
could potentially be addressed using nonlinear regression mod-
els designed to handle ceilings, such as the Tobit model [11],
but we chose not to do so here to keep the analysis method
relatively simple.

The third limitation is the appropriateness of the difference
in differences method. The difference in differences method
requires a parallel trend assumption, which states that if the
attribute difference between the two groups has no impact
on the measure under both the control and experimental con-
ditions, then the result of the two groups between control
condition and experimental condition should be parallel [1,
2]. While one could design an experiment to test the parallel
trend assumption, we believe that it is likely to be a reason-
able approximation because both cheaters and non-cheaters
are broadly similar as evidenced by their similar behavior on
control problems (e.g., scores on inaccessible exam problems
and coverage on accessible-not-on-exam problems).

The fourth limitation relates to the extent that the inaccessible
problem generators can be used as a control in the difference
in differences analysis of score advantage. It is likely that
cheaters also received some information about these problems,
which may have helped them even though they could not see or
practice the problems directly. This would lead to our analysis
underestimating the effect size. However, it is also likely that
cheaters under-prepared on problems that were not on the
exam, leading them to be less prepared for the inaccessible
problems and causing our analysis to overestimate the effect



size. These issues could potentially be addressed by a followup
study which adds more randomization to the inaccessible on-
exam problem generators (choosing them from large pools)
to provide a better control. Alternatively, a student-ability
control could potentially be used as in Chen et al. [4]. Within
the context of our current dataset, however, we can only note
that this limitation introduces some additional uncertainty into
the effect size estimates shown in Figure 7.

The fifth limitation involves the use of the accessible not-on-
exam problem generators as a control for the difference in
differences analysis of coverage. Because we identify cheaters
as students who over-practice on-exam problems, and hence
under-practice not-on-exam problems, our cheater coverage
values for not-on-exam problems are likely too low. This
means that we are probably overestimating the effect sizes
shown in Figure 9. This limitation seems to be inherent to
our cheater identification method, so we simply caution that
the real cheater coverage advantage may be less than our
estimates.

The sixth limitation is that our analysis focused on problem
generators that are shared between exams and homeworks, and
it is unclear how this would generalize to exam problems that
are kept secret. However, these shared problems are likely to
be the worst-case scenario for preventing collaborative cheat-
ing since it is easier for information producers to describe the
problems they have seen on the exams, and it is easier for in-
formation consumers to practice the problems once they have
obtained the information. This suggests that we are probably
overestimating the score advantage.

The seventh limitation is that the asynchronous exams we
examined are proctored and open only for a short period of
time, and thus it is unclear how applicable our results are when
asynchronous exams are not proctored or are perpetually open.

DISCUSSION AND CONCLUSION
In this paper we examined a dataset consisting of student home-
work records and asynchronous computerized exam records
where some problems are shared between homeworks and
exams. An asynchronous exam means that it was taken by
students at different times over a multi-day period, opening
up the possibility of collaborative cheating by earlier students
giving information about the exam problems to later students.

We identified students who cheated collaboratively by ob-
serving whether they disproportionately studied homework
problems that were also on the exam, after the earliest student
had taken the exam. We found that 5.5% of students were
classified as cheaters on average. With the cheaters identi-
fied, we studied how different degrees of randomized problem
selection impacted collaborative cheating.

We found that increasing the size of the pool from which
problem generators are selected lessened the score advantage
of collaborative cheating. In particular, at a pool size of 4, we
found the mean score advantage of collaborative cheating to
be less than 2 percentage points (statistically indistinguishable
from zero), down from an advantage of 13 percentage points
for pool size 1 where every student had the same problem
generator.

We hypothesize that the reduction in effectiveness of collabo-
rative cheating with increasing random problem selection is
partly due to cheaters’ lack of complete information as the pool
size increases. We showed that cheaters did have less infor-
mation: their coverage advantage drops as pool size increases.
However, the score advantage drops more than the coverage
advantage, suggesting that it is also harder for cheaters to
take advantage of studying with larger random pools, perhaps
because there are more problems to remember.

The conditions of this study are likely to be the worst-case
scenario for enabling collaborative cheating on asynchronous
exams, since shared problems between exams and homeworks
make it easier for students to study these problems if they have
information about which ones are on the exam. This means
that asynchronous exams which keep all exam problems secret
and use random selection will probably see even less score
advantage for students who attempt to cheat, with most likely
zero or even negative benefits.

Our study suggests that randomization is an effective tool to
discourage collaborative cheating and should be adopted as a
common practice for asynchronous computerized exams. We
note that two levels of randomization were used in our dataset.
First, problem generators were used to produce random prob-
lem instances (e.g., varying the numbers in a problem), which
already means that cheaters need to memorize algorithms to
solve parameterized problems rather than simply remembering
answers. Second, problem generators were randomly selected
from a pool, so that cheaters need to memorize several times
more algorithms if they are to have all the information about
the exam. We believe that randomization will be effective both
for in-person computerized exams, as studied here, and mas-
sive open online courses (MOOCs) where exams are almost
always asynchronous and students copying answers using mul-
tiple accounts has been observed to be a serious issue due [9].

Our results also provide empirical evidence about how much
randomization in problem selection is necessary. Our analysis
suggests four is a good pool size for randomized problem se-
lection to work well, although a pool size of three is also likely
to be effective. Of course larger pool sizes will work better,
provided that instructors can produce enough parameterized
problems to fill the pools.

In fact, we posit that with sufficiently large pool sizes, one can
eliminate the benefit of collaborative cheating by revealing
to all students the specifics of the exam construction (e.g.,
which problem generators are part of which pools and making
all of the problem generators public). With a large number
of potential problems, memorizing problem-specific solution
algorithms is both challenging with respect to short-term mem-
ory and less efficient than just learning the course material.
It requires further research to investigate how large the pools
would need to be to enable this kind of secret-free testing.
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APPENDIX
The regression coefficients for the score regression and cov-
erage regression and their associated statistics are shown in
Tables 1 and 2, respectively.

Visualizations of the score and coverage regressions are shown
in Figures 10 and 11, respectively. The solid line segments in
the figures correspond to the non-cheaters while the dashed
line segments correspond to the cheaters. The dotted line
segments are what cheaters would get under the parallel trend
assumption. Each vertical dotted line segment indicates what
the coefficient is measuring, and negative signs indicate that
the coefficient is actually negative.

Coefficient Value 95% CI p-value

α 79.449 78.892 80.006 0.000
β −1.814 −4.286 0.659 0.150
γ1 −4.206 −5.076 −3.336 0.000
γ2 9.105 7.456 10.755 0.000
γ4 0.097 −1.553 1.747 0.908
δ1 12.784 9.062 16.506 0.000
δ2 2.139 −5.092 9.371 0.562
δ4 1.548 −5.684 8.779 0.675

Table 1. Coefficients for regression on score and their 95% confidence
intervals computed with ordinary least square. The p-value corresponds
to the probability of the coefficient being 0 in a two tailed test.

Coefficient Value 95% CI p-value

α̃ 39.219 37.997 40.441 0.000
β̃ −6.265 −11.567 −0.963 0.021
γ̃1 0.745 −1.094 2.584 0.427
γ̃2 12.743 10.742 14.744 0.000
γ̃4 0.739 −1.262 2.740 0.469
δ̃1 49.198 41.401 56.994 0.000
δ̃2 27.903 19.174 36.632 0.000
δ̃4 22.907 14.178 31.636 0.000

Table 2. Coefficients for regression on coverage and their confidence
intervals computed with ordinary least square. The p-value corresponds
to the probability of the coefficient being 0 in a two tailed test.
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