
Discerning the Dominant Out-of-Order Performance
Advantage: Is it Speculation or Dynamism?

Daniel S. McFarlin
Carnegie Mellon University

dmcfarlin@cmu.edu

Charles Tucker Craig Zilles
University of Illinois at Urbana-Champaign

{cetucker,zilles}@illinois.edu

Abstract
In this paper, we set out to study the performance advantages of an
Out-of-Order (OOO) processor relative to in-order processors with
similar execution resources. In particular, we try to tease apart the
performance contributions from two sources: the improved sched-
ules enabled by OOO hardware speculation support and its ability
to generate different schedules on different occurrences of the same
instructions based on operand and functional unit availability. We
find that the ability to express good static schedules achieves the
bulk of the speedup resulting from OOO. Specifically, of the 53%
speedup achieved by OOO relative to a similarly provisioned in-
order machine, we find that 88% of that speedup can be achieved
by using a single “best” static schedule as suggested by observing
an OOO schedule of the code. We discuss the ISA mechanisms that
would be required to express these static schedules.

Furthermore, we find that the benefits of dynamism largely come
from two kinds of events that influence the application’s critical
path: load instructions that miss in the cache only part of the time
and branch mispredictions. We find that much of the benefit of
OOO dynamism can be achieved by the potentially simpler task
of addressing these two behaviors directly.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages–Processors:Compilers, Optimization, C.0 [Com-
puter Systems Organization]: General–Hardware/software inter-
faces
General Terms Performance
Keywords Optimization; Speculation; Dynamic Scheduling

1. Introduction
The current state of parallel programming has unleashed a tension
of design criteria on modern general-purpose CPUs. There are
neither so few nor so many parallel programs that either parallel
or single-thread performance can be marginalized. Instead CPU
designers must design chips with high single-thread performance,
but vigilantly maximize performance/area and performance/watt.

One important design decision that plays centrally in this trade-
off is the choice between in-order and out-of-order instruction
scheduling by the hardware. GPUs and lower-end processors have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $10.00

demonstrated the performance/area and performance/watt advan-
tages of in-order, but currently out-of-order (OOO) designs hold
the mindshare for achieving peak single-thread performance.

We perceive, however, that there are two potential sources for
the performance advantage between the hardware OOO sched-
ules and compiler-generated schedules as executed by in-order ma-
chines:

1. the OOO has few constraints other than true dependencies and
functional unit availability to constrain schedule generation,
whereas existing ISAs prevent the expression of some specula-
tive schedules by compilers.

2. OOO can execute the same instructions in different schedules at
different points of the execution, reacting to the specific events
observed during each execution. We’ll call this advantage dy-
namism.

Little effort has been directed at quantifying the contributions
of each of these effects, but we believe that this is an important
question. Specifically, if the difference between OOO and in-order
is largely not the result of dynamism, but rather due to the inability
of the compiler to express the desired schedule given the available
ISA interface, this is something that can be addressed by further
ISA development.

To this end, this paper reports a study we undertook to character-
ize the relative importance of dynamism in OOO and better under-
stand the schedule differences between in-order and OOO sched-
ulers.

This paper makes the following contributions:

• We demonstrate that most (on average 88%) of the OOO’s
performance advantage is due to the speculation support that
enables the formation of high quality schedules.

• We show that the OOO’s remaining performance advantage
from dynamism is predominantly from its ability to deploy
different schedules in the immediate locus of a cache miss or
branch misprediction.

• We quantify the ability of a complexity-effective, “off-the-
shelf” solution for cache miss recovery coupled with a simple
mechanism for misprediction recovery to cover the remaining
performance gap to the OOO.

• We provide recommendations for realizing performance com-
petitive in-order designs given current technology and workload
trends.

The remainder of the paper is organized as follows: Section 2 elab-
orates on the need for the present work. Section 2.1 examines the
motivation for the strong tendency towards OOO designs in indus-
try and the factors limiting the performance competitiveness of in-
order designs. In Section 2.2 we employ a criticality framework to

!"

#"

$"

%"

&"

'"

("

)"

!"#$%&'()*++ ,%-)$+ ./)%0/1-'+
2(0031+

45#$%&'()*+ 61(03)+7%-0$8+
981-:);+

61(03)+7%-0$8+
9-<-#:=$;+

2(0#-%83(/+(>+6=$%-?$+!@A23/1+BCCC+D$?3(/+!3E$+7(%+
F-%3("8+!1-:)+!)G$<"'3/?+,$)G/3H"$8++
IJ-83)+J'()*8+@$%+D$?3(/K+++

Figure 1. Average region size achieved by top-performing
scheduling techniques for in-order machines.

explore the theoretical and practical implications of dynamism on
performance and provide intuition as to its principle and we argue,
limited advantages over the OOO’s baseline speculation support.
Section 3 looks at our methodology for quantifying the relative con-
tributions of dynamism and speculation to OOO performance; the
presentation and discussion of our results appear in Sections 4 and
5. The rich history of the in-order vs. OOO debate along with the
challenges academia and industry encountered in trying to match
the OOO’s performance are explored in Section 6. We conclude in
Section 7.

2. Background/Motivation
Previous work has observed that OOO scheduling hardware tends
to spend most of its time scheduling the same small subset of the
static program, and moreover tends to create the same cycle-by-
cycle schedule repeatedly. Caching these schedules is the motiva-
tion for Execution Caching [47], to allow the scheduler to be shut
down (which they argue produces power savings) some of the time.

Our work extends this intuition in several ways. First, previous
work has been in terms of actual architectural implementations,
which tends to mask the theoretical limitations of static schedul-
ing with implementation details. We seek conclusions applicable
more generally to statically scheduled architectures. In addition, we
want to tease apart the OOO performance advantage to see whether
an aggressive in-order design has any hope of matching its perfor-
mance, and what sorts of features it would require to do so.

2.1 The Perceived Out-of-Order Performance Advantage
Despite some of the well-known advantages offered by in-order
designs (usually lower power, higher frequency, and reduced HW
complexity), Out-of-Order designs dominate general purpose com-
puting and are proliferating into domains where OOO designs were
conventionally seen as poorly suited e.g. transaction processing
[41], data/control-plane processing [20] and the embedded space
[16]. While direct comparisons between in-order and OOO designs
are difficult, OOO designs seem to consistently provide higher
single-thread performance relative to comparably provisioned in-
order designs [22].

The common explanation for the IO/OOO performance dispar-
ity is that the OOO is inherently better at exploiting memory-level
parallelism as even the most sophisticated static schedule is hob-
bled by the stall-on-use/head-of-line blocking problem inherent to
cache misses in IO designs [2, 22]. In contrast, the enduring trend
over several generations of OOO designs is their ability to toler-

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

!" #" $" %" &" '" (")" *" !+" !!" !#" !$" !%" !&"
,-./0,12340"56/3,"57-,8/"

,9:;<=>?@<"5A;B="5C9=D"-@<ECAF"-:"6"%GHAIJ""'%G0:KEI"3LJ"!#)G0:KEI"
M-5"->KG9NG-EO<EP"6@<EAQ<O"N9E"/R0,B:K"#+++"SAT<E"4ACC>EB"<K"ACPU"
VR<E=<:KAQ<"9N"0W<=>?9:",I=C<;X"""

(!)"*+",,,"
-./012*3"4506/7"

4*389:3";771/"<=*1>7"
?:8@";378=102*37"

A/6/08/B"C=*D"E>"F*"
'"4*37/012G/"H97:0"

H6*0I7"

Figure 2. The basic block overlap ability of a representative out-
of-order design.

ate an ever increasing number of longer latency cache misses; In-
tel’s 22nm Ivy Bridge boasts a window size nearly twice that of the
45nm Penryn [24]. Indeed, given the ever increasing complexity
and non-determinism of the memory hierarchy, the MLP advantage
seems to be what is motivating the trend towards OOO designs. Re-
cent in-order processors have explicitly incorporated HW features
to “buy back” [28] this loss of MLP relative to the OOO includ-
ing run-ahead execution (Power6) and Subordinate scout threading
(Rock) [22]. Yet, a recent in-order design that combined a sophisti-
cated run-ahead scheme, advanced prefetchers, register checkpoint-
ing, and gated store-buffer with a good compiler was still some 42%
slower than a comparably provisioned OOO design [22]. Why?

Figures 1 and 2 highlight a major challenge for in-order de-
signs in matching the OOO: the OOO’s ability to simultaneously
execute instructions from a consistently larger number of con-
secutive basic blocks. Figure 1 compares the average region size
(number of basic blocks) found by some of the best performing
static scheduling techniques documented in the literature when ap-
plied to SPECint 2000. Trace Scheduling [42], Superblock [21]
and Hyperblock [17, 37] are all well known, often profile-driven
global scheduling techniques employed by static compilers. Incre-
mental Commit/Non-Atomic Traces [51] and Atomic Frames [36]
are techniques employed by runtimes to dynamically optimize bi-
naries; the first three techniques require modest amounts of HW
support; the last two require fairly aggressive HW implementa-
tions with the adaptive version of Atomic Regions continually re-
optimizing certain regions based on performance/event counters.

Excluding Atomic Frames, the first four scheduling techniques
produce regions of, on average, between 3.3 and 5 basic blocks
in size. How does this compare to the OOO? Figure 2 shows that
overlapping the execution of instructions from 4 basic blocks is
only sufficient to account for about 70% of the OOO’s execution
cycles; the OOO spends the remaining 30% of its execution cy-
cles issuing instructions derived from 5 or more consecutive basic
blocks. Note Figure 2’s ”long tail”; even overlapping the execu-
tion of instructions from 6 consecutive basic blocks, comparable to
the overlap achieved by the best performing Atomic Frames vari-
ant, only accounts for about 82% of the OOO’s execution cycles.1

Adding yet another consecutive basic block (a region size increase
of 16%) contributes only another 3% improvement to coverage.
Furthermore, the emerging performance trend of static scheduling

1 Architectures such as TRIPS [17] and the Region Slip variant of rePlay
[45] provide for the overlapping of Hyperblocks and Atomic Frames, re-
spectively, at the cost of substantially increased hardware, runtime and com-
piler complexity as well as costlier misspeculation penalties

techniques for SPECint 2006 is not particularly encouraging; [43]
reports that the average region size for global trace scheduling fell
about 15%, from 3.7 basic blocks to 3.2 basic blocks.

While this data re-affirms the well-known need for hardware
support for software speculation, state-of-the-art static scheduling
techniques that rely on such support still fail to match the dynamic
schedules produced by the OOO. We argue that the primary enabler
for the higher quality, dynamic schedules is the OOO’s more gen-
eral and better provisioned speculation support facilities (very large
ROB, renamer, larger Load/Store Queue, dynamic/adaptive mem-
ory disambiguation) [49] and the generally lower cost of misspecu-
lation; the OOO can more readily adapt to data misspeculation [10]
while its finer-grained commit and cheaper recovery mechanisms
give it an edge over Non-Atomic Traces and Atomic Frames [9, 45].
Consequently, a combination of HW support for software specula-
tion, some form of non-blocking instruction issue and, as will be
demonstrated, the ability to recover from mispredicts is necessary
to close the performance gap. To the best of our knowledge, no in-
dustrial or academic design has explored the theoretical desirability
and practical necessity of this combination.

2.2 Scheduling vs. Dynamism
It is easy to attribute the benefits of OOO almost entirely to dy-
namism, that is the ability of OOO to generate schedules at run-
time based on the actual path taken by the code and execution la-
tencies of the operations. In this section, we attempt to tease apart
what OOO provides to understand which component could poten-
tially be provided by simpler mechanisms.

Path Specificity:
Because out-of-order performs scheduling after branch pre-

diction it gets the benefit of scheduling based on the predicted
path. This creates a important practical distinction between out-of-
order and in-order when the predictability of a branch exceeds the
branch’s bias. Consider, for example, the following code:

Block A is terminated by a branch that can flow to either block
B or block C. Each basic block contains a collection of instructions
with dependencies, which result in the schedule for each basic
block to be narrower than the machine’s width. There is, however,
potential for overlap between basic blocks (i.e., the critical path
through the whole application is not the sequence of critical paths
through each basic block).

On an out-of-order machine, if block B is predicted to follow
block A, then the instructions from block B will be intermingled
with those from block A. Similarly, if the path from block A to
block C is predicted, then C’s instructions will be intermingled with
block A.

Of course, many compilers are capable of hoisting instruc-
tions across basic block boundaries, often using ILP scheduling
techniques like superblock scheduling. What ILP scheduling tech-
niques accomplish is to statically pick a path for optimization (e.g.,
the path from block A to B) and hoist instructions from block B
into block A. Using this technique, when the code executes the path
from A to B, it can achieve schedule quality similar to that of the
out-of-order machine. When the path from A to C is taken, how-
ever, the collection of instructions from block B that were hoisted
to block A are wasted work and we have achieved no overlap be-
tween C and A 2. This is not a serious problem if the the path from
A to B is much more frequent than the path from A to C. Further-
more, the behavior of the A to C path with an ILP scheduling com-
piler is much like the behavior of the out-of-order machine when it

2 Alternatively, we could hoist some instructions from both B and C into
block A, but typically machine width and functional unit limitations prevent
us from hoist as many instructions from either path if we choose to hoist
from both.

predicts incorrectly to follow the path from A to B when the path
A to C is needed; in this case, the out-of-order will hoist much of
B before the branch in A is resolved at which point C will need to
be fetched, likely resulting in no overlap between A and C.

In short, an ILP compiler typically achieves good overlap in pro-
portion with the bias of the branch, while the out-of-order does so in
proportion to the predictability of the branch. This results in a sig-
nificant advantage for the out-of-order because branch predictabil-
ity is almost always higher than branch bias, sometimes signifi-
cantly so.

Variable Latency:
Tolerance of long latency operations is an often touted strength

of out-of-order processors, but it is important to recognize that
static scheduling — through techniques like modulo scheduling —
can effectively tolerate long latencies as well. The key advantage
of out-of-order is two-fold: first, in its ability to tolerating variable
latency, and, second, in how this interacts with path specificity.

While most instructions on modern machines have a fixed la-
tency, some instructions, notably load instructions, have a variable
latency. This variable latency is important when it potentially af-
fects the critical path. Consider the following three scenarios:

Scenario A: (off the critical path)

(int *)A[N];
int C[N];

for (int i = 0 ; i < N ; i ++) {
C[i] = *A[i];

}

This code exhibits a “spine and ribs” structure where the loop
carried dependence (i++) forms the critical path and the work of
the loop (a serial dependence chain of two loads and store) are a rib
hanging off that spine. Because the variable latency — the second
load — is on the rib (and hence off the critical path) a compiler for
an in-order machine could theoretically schedule the consumers of
that load for its worst case latency. This would achieve the same
performance as the out-of-order, because there is little benefit to
completing the spines early.

Scenario B: (on the critical path)

int A[N], index = 0;

for (int i = 0 ; i < N ; i ++) {
index = A[index];

}

In this code example, we can pack the code as tight as possible.
The critical path will always go through the loads, no matter what
their latency.

Scenario C: (the critical path is a function of latency)
What is particularly challenging for static scheduling to deal

with is when the critical path through a region is a function of
whether an access hits or misses in the cache. Below is a simple,
illustrative example of this consisting of 4 loads. The data depen-
dence graph for this code is shown in Figure 3(a).

z = p1->x->z + p2->x->z;

In this code, how the second pair or loads should be scheduled
depends on which loads miss, so that we can overlap misses. Fig-
ure 3(b) shows a scenario where the p1->x->z load should be
scheduled last so that both misses overlap, and Figure 3(c) shows
the complementary scenario that benefits from the other ordering.
This is a situation where there is no substitute for dynamism.

Early Branch Resolution:

LD p1->x

LD p1->x->z

LD p2->x

LD p2->x->z

add

MISS

hit

hit

MISS

add

MISS

hit

hit

MISS

adda) b) c)

Figure 3. Scenario C variable latency code example: a) data de-
pendence graph, b) p1->x and p2->x->z miss, c) p2->x and
p1->x->z miss.

While it doesn’t happen frequently, an OOO machine has the
potential to overlap branch misprediction latency with other execu-
tion. In the code that follows, the branch on b does not depend on
the computation before it, so it can be resolved in parallel with the
computation.

p->y ++;
if (b) {

...

Achieving this overlap can be challenging for in-order machines
because branches generally must be placed at the end of their
basic block (to demarcate which instructions belong in the block),
which also constrains their place in the schedule. Two solutions
to this problem are available. On the software side, the pre-branch
computation can be pushed down onto both downstream paths at
the cost of code replications. On the hardware side, “prepare-to-
branch” mechanisms [29] have been proposed that separate the
computation of a branch outcome from the branch’s role as a
basic block boundary; IBM’s Cell processor is a recent example
employing such a mechanism [19]

Branch Misprediction:
One of the fundamental advantages of dynamic scheduling over

static schedules is that ability of the dynamic scheduler to “ramp
up” after and during a branch mispredict. Specifically, the dynamic
scheduler has superior recovery from branch mispredicts as it is
able to respond to actual instruction readiness that occurs during
and after the mispredict recovery period rather than the readiness
assumptions encoded in a static schedule. The main insight here is
that the ILP instructions hoisted by the static scheduler between a
critical path producer and consumer to cover non-unit latencies can
in fact extend the critical path when these non-unit latencies have
already been covered (in part or in full) by the misprediction re-
covery latency. Once the correct path instructions hit the execute
stage, a statically scheduled machine must still churn through the
non-critical hoisted instructions before reaching the critical path
consumer despite the consumer’s immediate readiness upon mis-
prediction recovery; a dynamically scheduled machine has no such
limitation and can immediately execute the critical path consumer.

We illustrate this phenomenon through two examples excerpted
from SPEC2000 Integer benchmarks and visualized in Figures 4
and 5. Each figure follows the same convention:

• Time flows from left to right
• Instructions that issue in the same cycle are shown in the same

column
• Non critical path instructions are denoted by a label of the form
ILP[0-9]+

• A shows the in-order, linear instruction sequence as emitted
by the compiler; Critical path instructions are identified by
decorated borders

• B shows an execution trace of the dynamically scheduled code
(OOO) when the fall-through is correctly predicted

• C shows an execution trace of the statically scheduled code
(VLIW with packets shown as rounded rectangles) when the
fall-through is correctly predicted

• D shows an execution trace of the dynamically scheduled code
(OOO) when the fall-through is mispredicted

• E shows an execution trace of the statically scheduled code
(VLIW) when the fall-through is mispredicted

All examples have consumers of loads located in the fall-through
path of a conditional branch. Both the dynamic scheduler and
static scheduler are able to cover the load-to-use latency of the
loads by hoisting instructions from the fall-through-path after the
branch but before the consumer. In the common case of a correct
branch prediction (not-taken), the dynamic schedule and the static
schedule execute in the same number of cycles. The real disparity in
performance comes in the event of a branch misprediction. The load
prior to the branch executes in the same cycle in both schedules.
Assume that both redirect the front-end at the same time and both
incur the same mispredict penalty. In both cases, the L1 hit latency
is covered by the time to redirect the front-end. In other words,
for both scheduling techniques, the consumer of the load is ready
to execute as soon as it enters the window. In the parlance of
Fields criticality [14], the consumer of the load issued prior to the
mispredicted branch is fetch critical.

The delinquent execution of r0 in E relative to D in Figure
4 (derived from gap) shows the performance difference between
the two scheduling techniques; the dynamic scheduler is able to
immediately execute the consumer of LD(A) (it is the oldest, ready
instruction in the window). In contrast, the static schedule that
enters the window after the branch misprediction recovery consists
of instructions that were hoisted to cover the L1-hit latency but
this latency has already been covered by the mispredict latency.
As a result, these hoisted instructions now prevent the immediate
execution of the load’s consumer.

Though the branch mispredict latency extends the critical path
length for both the dynamically and statically scheduled versions,
the hoisted instructions in the static schedule now further extend
the critical path length by delaying the use of a critical, ready
instruction. In other words, a static schedule to cover the L1-
hit latency along the critical path is now penalized by the L1-hit
latency. An extension of this scenario occurs when, with sufficient
profiling, the static scheduler schedules for an L2 hit and is able
to find sufficient ILP to cover the L2-hit latency. In this case, the
execution of the use of the L2-hit is delayed by 10 cycles (the
mispredict recovery latency) when the redirected instruction stream
finally reaches the execute stage.

Figure 5 derived from eon demonstrates that this problem is
compounded by the presence of cascading loads i.e.loads that feed
other loads. In this example, r0 = LD(A) feeds r1 = LD(r0)
before a conditional branch. The consumer of r1 is after the condi-
tional branch. As in example 1, in the case of a correctly predicted
fall-through, the performance of the static schedule is identical to
that of the dynamic schedule; the static schedule initiates r0 =
LD(A) before the conditional branch and pushes the use of r0 (r1
= LD(r0)) beneath the branch. The L1-hit latency of LD(A) is
covered by hoisted instructions; the L1-hit latency of LD(r0) is
similarly covered. With an L1-hit latency of 4 cycles, the path to r1
from LD(A) is 8 cycles. As in Example 1, both scheduling tech-
niques experience a mispredict. For the OOO, LD(A) and LD(r0)

MISPREDICT

ILP5BRANCH ILP0 ILP1USE r0 ILP2 ILP3 ILP4

BRANCH

ILP0

ILP1

ILP2

ILP3 ILP5

ILP4 USE r0

r0 = LD(A)

BRANCH

ILP0

ILP1

USE r0ILP2

ILP3

ILP4

ILP5

BRANCH ILP0

ILP1

ILP2 ILP4

ILP3USE r0

FRONT-END REDIRECTION PENALTY

BRANCH

ILP0

ILP1

USE r0ILP2

ILP3

ILP4

ILP5
FRONT-END REDIRECTION PENALTY

MISPREDICT

A

B

C

D

E

r0 = LD(A)

r0 = LD(A)

r0 = LD(A)

r0 = LD(A)

L1 D$ HIT LATENCY

L1 D$ HIT LATENCY

L1 D$ HIT LATENCY

L1 D$ HIT LATENCY

ILP5

In-Order

Out-of-Order

VLIW

Out-of-Order

VLIW

Figure 4. Misprediction recovery latency covers L1-hit latency

MISPREDICT

BRANCH ILP0 ILP1

USE r1

ILP2 ILP3 ILP12

BRANCH

ILP0

ILP1

ILP2

ILP3 ILP5

ILP4

r0 = LD(A)

BRANCH

ILP0

ILP1

USE r1ILP2

ILP3

ILP4

ILP5

BRANCH ILP0

ILP1

IL2 ILP4

ILP3USE r1

FRONT-END REDIRECTION PENALTY

BRANCH

ILP0

ILP1

USE r1ILP2

ILP3

ILP4

ILP5FRONT-END REDIRECTION PENALTY

MISPREDICT

A

B

C

D

E

r0 = LD(A)

r0 = LD(A)

r0 = LD(A)

r0 = LD(A)

USE r1

ILP6 ILP8

ILP7

ILP10

ILP9

ILP12

ILP11

ILP6

ILP7

ILP8

ILP9

ILP10

ILP11

ILP12

ILP5

ILP6 ILP8

ILP7r1= LD(r0)

ILP6

ILP7

ILP8

ILP9

ILP10

ILP11

ILP12

ILP4 ILP5 ILP6 ILP7 ILP8

r1= LD(r0)

r1= LD(r0)

r1= LD(r0)

r1= LD(r0)

L1 D$ HIT LATENCY L1 D$ HIT LATENCY

L1 D$ HIT LATENCY

L1 D$ HIT LATENCY L1 D$ HIT LATENCY

L1 D$ HIT LATENCY L1 D$ HIT LATENCY

L1 D$ HIT LATENCY

ILP9

ILP10 ILP12

ILP11

In-Order

Out-of-Order

VLIW

Out-of-Order

VLIW

Figure 5. Misprediction recovery latency covers L1-hit latencies of a Load chain

can both execute in the shadow of the mispredict recovery. When
the correct path instructions finally enter the window, LD(r0) , as
the oldest, ready instruction executes immediately. In contrast, be-
cause the static schedule has pushed the r1 = LD(r0) => USE
r1 chain below the branch and hoisted ILP instructions to cover the
L1-hit latencies for r0 = LD(A) and r1 = LD(r0) , the exe-
cution of r1 is delayed by 8 cycles.

3. Experimental Method
In an attempt to separate the speculation and dynamism aspects
of OOO execution, we have developed a simulator framework that
allows us to run a benchmark on the simulator configured as an
OOO processor and capture the dynamic schedules used, identify a
dominant schedule for each region, and replay these schedules in a
second in-order execution. In this section, we describe our choice
of benchmarks (Section 3.1), how we collect the dynamic schedules
(3.2), how we replay these schedules

It should be noted that this work is a limit study of sorts. Specif-
ically, we make no attempt to describe the mechanisms that would
be necessary to produce these schedules nor the architectural fea-
tures that would be necessary to encode these schedules. We do,
however, think that a useful mental model for the system under
study is a machine like the Transmeta Crusoe [9], which consisted
of a VLIW processor coupled with the CMS dynamic binary trans-
lator. Our study can be viewed as investigating the potential for a
futuristic dynamic optimizer provided it was not constrained in the
static schedules it could generate and it could effectively profile the
execution so as to generate relevant schedules.

In addition to scheduling code, such a dynamic optimizer is
capable of applying other optimizations (e.g., converting a store-
to-load forwarding into a register communication) that can reduce
the program’s critical path and/or number of executed operations.
While these transformations are valuable and could potentially im-
prove the performance of an optimized in-order execution past a
traditional out-of-order, we will not consider those here because
they would only make our goal of understanding the role dynamism
plays in OOO execution by obfuscating where performance is com-
ing from.

3.1 Benchmarks
Because the largest benefits of OOO have historically come from
non-numeric programs3, we focus on integer programs, from the
SPECint 2000 benchmark suite, in this work. For our Alpha-based
simulation framework, our executables are compiled using the DEC
C Alpha compiler (V5.9- 005), with peak optimizations enabled for
the 4-wide, in-order DEC Alpha 21164, but no profile feedback.

For each experiment, we run several checkpoints from each
benchmark in SPECint 2000. Each run executes for 2 million in-
structions to warm up caches and branch predictors then execution
time is measured for the next 10 million instructions.

3.2 Harvesting Schedules
Generating our static schedules is a two step process. In the first
step, we run our OOO simulator and collect a trace of the schedule
as it was scheduled by the OOO machine. To make the selection
of a dominant schedule tractable, we find dominant schedules for
various regions of code and then stitch them back together. Thus, as
we collect the trace, we break it into snippets of code, terminating
snippets at backwards branches and function returns. Each time a

3 Numeric programs often have extensive instruction-level parallelism,
more regular control flow, and simpler memory-access patterns (e.g., fewer
pointer-based data structures) which make traditional compiler optimiza-
tion more successful resulting in very competitive performance on in-order
machines.

snippet is captured, we record the cycle that an instruction executed
relative to the first instruction of each snippet (which executed in
cycle 0 by definition). Due to the nature of the OOO, it is common
for instructions to have negative offsets. We also record the PC and
the offset of the first instruction of the next snippet, which we use as
a stitching point when we attempt to put the snippets back together.

We aggregate all of the snippets from all of the checkpoints of a
given benchmark and post-process them together. The first step is to
discard any schedules that embed a mispredicted branch; we found
that these schedules are too pessimistic to assume as our static
schedule. Second, any time the stitching point has a negative offset
(e.g., when the first instruction of a subsequent snippet happens
to execute before the first instruction of this schedule), we set the
stitching offset to zero to avoid a deadlock in our simulations. After
these two transformations, we simply select the most common
schedule (i.e., the mode) to be our static schedule. This schedule
along with its key – the sequence of PCs in program order that make
up the schedule – are entered into a “database” which is used in the
subsequent simulation. Together these snippets provide more than
99.999% coverage of our simulated dynamic instruction stream.

As our “region formation” heuristic is very simple, it has some
known shortcomings. First, it often results in short snippets. This is
largely mitigated by overlapping the schedule of snippets through
the stitching discussed below. Tight loops with high trip counts
have the potential to be more problematic. Our methodology can
underestimate the performance of such loops because it is con-
strained to produce code with integer initiation intervals. For ex-
ample, a loop with 5 instructions will result in an initiation interval
of 2, where a compiler, by unrolling this loop could pack 4 itera-
tions into 5 cycles.

3.3 Replaying Dominant Schedules
We have modified the front end of our simulator to allow us to
replay these dominant schedules as if they were static schedules
provided by a compiler. At the fetch stage of our timing simulator,
we exploit the functional-first nature of our timing simulator to
examine the upcoming dynamic trace of instructions to generate
a key and select the appropriate snippet. By construction, none of
our snippet keys are a prefix of any other, so this lookup process is
a simple one. In this way, we construct a short queue of snippets
and their schedules.

We combine the snippet schedules into a composite schedule
by placing each successive schedule’s cycle 0 at the insertion point
indicated by the previous schedule and populating the compos-
ite schedule. Because our snippet schedules are selected indepen-
dently, there is the potential that we selected a snippet schedule that
never executed with the schedule for the snippet before it. As a re-
sult, this naive stitching can result in unrealizable schedules due
to oversubscribing the width of the machine or by violating data
dependencies. If one of these violations is detected, the insertion
point is “bumped” forward a cycle and the process is repeated. In
principle, most of this work could be done offline, but as our post-
processor doesn’t actually decode the instructions and hence cannot
detect dependence violations, it was simplest to implement this as
part of the front end. Most notably, stitching is performed in the
front end with no awareness of dynamic events like branch mispre-
dictions or cache misses, so is performed the same way each time
for a given sequence of basic blocks.

Our simulator framework lacks support for feeding wrong-path
instructions into our timing model. When our predictor model in-
dicates a mispredicted branch, we stall fetch of subsequent instruc-
tions until the branch hits an execute unit (and resolves), after
which fetch begins again. We use the same approach for all sim-
ulations.

Front end 4-wide fetch (no I$ modeled)
10-cycle branch mispredict
GShare (16b index, 16b history)
Cascading Indirect Predictor
2K-entry target buffer
16-entry RAS

Execution Maximum 4 of:
4 Int (1 cycle simple, 5 mul/div)
2 FP (4 simple, 20 complex)
2 Load/Store (1 AGEN/TLB) + cache latency)
64 entry window

Back end 128 entry ROB
4-wide commit

L1$ 32KiB, 64B line, 4-way LRU, 3 cycles
L2$ 256KiB, 64B line, 8-way LRU, 25 cycles
DRAM 150 cycle latency, 16B/cycle
iCFP 64 entry slice buffer

Table 1. Simulated machine parameters

As previously noted our snippet coverage is almost but not quite
100%. So as to be not too pessimistic with the less than 0.00001%
of the total instructions that aren’t covered by snippets, dynamic
scheduling is used for these instructions in the simulator. We don’t,
however, allow the execution of these instructions to overlap with
snippets before or after them, which means our handling of these
instructions is likely conservative.

3.4 Processor Model
Our processor model is configured to approximate the resources
and latencies in modern OOO processors [34], as shown in Table 1.

In order to support pre-scheduled code in the simulator, we
need to make a handful of simplifications and modifications to the
processor model’s front end. First, as previously noted, we use
a functional-first methodology which lacks support for injecting
wrong-path instructions into the execution. The impact of this lim-
itation is mitigated by the fact that we are studying the relative per-
formance of the pre-scheduled runs to a baseline (OOO) and all
runs incur this limitation.

Second, it would be difficult to accurately model the instruction
cache performance of the pre-scheduled runs, so we assume a
perfect instruction cache. This has little impact on the baseline runs
because our benchmarks have relatively small instruction working
sets, but may result in some over-prediction of performance for the
the pre-scheduled runs which will necessarily require some amount
of code replication in order to achieve the desired static schedules
in the presence of control flow.

Third, we perform branch prediction using the PC of branches
as they appear in the original execution stream. In a real system, any
place code has been replicated, each of those static instances would
likely index into different places in the branch predictor. This sepa-
ration can have negative (e.g., longer training times, more predictor
aliasing) and positive (e.g., the streams may be more predictable
when separated) affects. We cannot, however, consider this in our
simulation infrastructure because our snippets selection is derived
from future path information such that many snippet branches are
completely biased. By using prediction based on the original pro-
gram stream, we can ensure that our performance results are not
benefiting from any prediction anomalies.

When branch mispredictions occur, their penalties are enforced
at the point where the branch was scheduled; that is, post-branch
cycles of the schedule are not fetched until the branch itself has
executed. This does not however prevent right-path instructions that
were scheduled above the branch to execute in parallel with the

branch resolution as if they had been hoisted above the branch by
the compiler. We are not, however, able to model the contention
from wrong path instructions that the compiler might also have
desired to hoist above the branch.

3.5 Avoiding Cache Miss-Induced Stalls
Continual Flow Pipelining [46] was originally proposed to give an
existing OOO processor a larger effective window without growing
complex structures. It does this by “slicing out” instructions tran-
sitively dependent on (and stalled by) a load miss (or equivalently
any other high-latency event) into a separate queue and re-inserting
them in the back-end when the load miss returns. In-order retire
still requires that these sliced instructions hold ROB slots, but other
resources (physical registers, reservation station slots) can be used
for independent work. Notably, this does not allow for load/store
queue entries to be reclaimed; dependencies through both registers
and memory must be identified to slice out the correct instructions.
Once the load miss comes back, the design “rallies”, leveraging ex-
isting superscalar / SMT front-end hardware to dovetail the slice
contents with the fresh instructions still being fetched.

In-order architectures rarely actually stall the processor when
they encounter a cache miss (“stall on load”). Instead, they they
allow independent instructions to proceed in the pipeline in parallel
with the cache fill, but only up to the first instruction which uses
the missing memory value, at which point they must stall (“stall on
use”).

In iCFP (in-order Continual Flow Pipelining) [22], this slice-
out mechanism requires the much the same speculative-execution
support an OOO does (ROB or equivalent result-buffering queue,
load-store alias detection / avoidance), but allows the processor to
make independent progress by not stalling on the first use of the
result. Instead, iCFP poisons the result of the load and adds it to the
slice buffer, and any later instruction that uses a poisoned value is
sliced / poisoned in turn. When the miss returns, instructions are re-
issued from the slice buffer in parallel to fresh instructions from the
front-end (in the usual super-scalar fashion), potentially exposing
new misses and MLP.

Since we assume the same speculation support in our experi-
mental machine, iCFP makes an excellent compliment, and allows
us to effectively extract another schedule in the shadow of a cache
miss. Our implementation slices out the poisoned portions of each
issue group into a FIFO, and always rallies to the head of that queue
when any miss returns. Rallied issue groups are allowed to merge
with fresh groups if they fit together, though no dependence check-
ing is required for this merge due to the use of poison bits. See
section 4.1 for its performance impact.

4. Results
In an effort to understand the roles that speculation and dynamism
play in contributing to OOO performance, we first attempt to mea-
sure their relative contributions by measuring what fraction of OOO
performance can be achieved through the OOO’s speculation sup-
port without its ability to schedule dynamically (Section 4.1). We
then move on to understand in what ways does dynamism con-
tribute the remaining performance and to what degree do mecha-
nisms that provide dynamism in the specific circumstances where
it most benefits us can substitute for the general dynamism mecha-
nism that is OOO execution (Section 4.2).

4.1 Speculation vs. Dynamism
To understand what fraction of baseline performance is contributed
by OOO execution, we begin by comparing the performance of the
baseline OOO to a comparably provisioned in-order superscalar,
with both machines executing the traditionally compiled code. The

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!"#
$%&
!

!'(
)*
+!

!,-
.!

!/)
%!

!/'
'!

!/#
$%!

!0
'1!

!%)
(2,
(!

!%,
(3!

!45
-31
!

6-
(4,
7!

6%
(8(
-9
4,!

:6
,()
/,
!

;)2,3$.,!<.=>(?,(!!@2A!<.=>(?,(!B.C).',?!D$4C!
E%,'93)F-.!E9%%-(4!!!
G%,(1-(0).',!.-(0)3$#,?!4-!>94=-1=>(?,(H! -./01231" 4.56.732"-./01231"

Figure 6. Performance Comparison of the Baseline In-Order and
the In-Order Enhanced With Support for Software Speculation

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!"#
$%&
!

!'(
)*
+!

!,-
.!

!/)
%!

!/'
'!

!/#
$%!

!0
'1!

!%)
(2,
(!

!%,
(3!

!45
-31
!

6-
(4,
7!

6%
(8(
-9
4,!

:6
,()
/,
!

;)2,3$.,!<.=>(?,(!!@2A!<.=>(?,(!B.C).',?!D$4C!
E%,'93)F-.!E9%%-(4!!@2A!<.=>(?,(!B.C).',?!D$4C!
E%,'93)F-.!E9%%-(4!).?!$GHI!!!
J%,(1-(0).',!.-(0)3$#,?!4-!>>>K! -./01231" 4.56.732"-./01231" 4.56.732"-./01231"8"9:;<"

Figure 7. Performance Comparison of the Baseline OOO and the
In-Order Enhanced With Support for Software Speculation and
iCFP

in-order performance (normalized to the OOO) is shown in the left-
most bar of Figure 6. We find the in-order machine to achieve, on
average, 47% of the performance of the OOO, which is consistent
with previous results [22]. This same work suggests that coupling
a comparably provisioned in-order with an advanced run-ahead
mechanism, iCFP is only sufficient to reach 57% of the OOO’s per-
formance, for the integer programs currently under investigation.

The pre-scheduled code exploits the speculation support of an
out-of-order without benefiting from dynamism. Running the pre-
scheduled code on the same in-order processor model results in
substantially higher performance. As shown in the right bars of
Figure 6, the pre-scheduled code achieves 89% of the OOO per-
formance compared to the baseline in-order’s 47%. From this data,
it appears that it is OOO’s ability to generate aggressive sched-
ules, and not its ability to vary these schedules based on dynamic
events, which is responsible for most of its performance advantage.
Specifically, speculation provides roughly 79% of the gap between
the in-order and OOO baselines.

4.2 Understanding Dynamism
By comparing the execution schedules produced by the OOO simu-
lator with that of the pre-scheduled in-order, we observed two situ-
ations that seem to contribute the bulk of the performance discrep-
ancy: re-scheduling in the locus of a cache miss and in the locus
of a branch misprediction. In an attempt to quantify their relative
contributions as well as to understand to what degree these types
of dynamism could be captured by mechanisms that are potentially
simpler than a general out-of-order mechanism, we undertook two
further experiments.

First, we enhanced our simulator to implement a simple im-
plementation of in-order Continual Flow Pipelining (CFP) [22],
as described in Section 3.5. The dynamism that iCFP provides is
very specialized and at a relatively course granularity. If there are
no cache misses, iCFP has no impact on the execution. Upon a
cache miss, the program is split into two streams, a miss-dependent
stream and a miss-independent stream. Each of these streams re-
tains its existing schedule, but these schedules can slip with respect
to each other.

In spite of the somewhat simplistic nature of this dynamism, it
seems to provide exactly what the pre-scheduled in-order execu-
tion requires. With iCFP, the pre-scheduled code can, on average,
achieve 99% of the performance of the OOO, as is shown in Fig-
ure 7. We find that this makes a lot of sense. The pre-scheduled
code already encodes the code re-ordering that is required for com-
mon case good performance, so the fact that iCFP does nothing in
the absence of a cache miss is not a problem.

However, even in this configuration, the performance of eon,
gap and vortex still lags behind the OOO by 2%, 4.9% and 5.2%
respectively. We attribute this performance deficit to the in-order’s
inferior “recovery after branch mispredict” behavior described in
detail in Section 2.2 with visualizations of such behavior excerpted
from eon, gap and vortex. As an expedient, we found that sim-
ply executing the next 20 instructions after a branch mispredict
on the dynamic scheduler enabled these benchmarks to match the
OOO’s performance; no more than 4% of the total instruction count
is directed towards the dynamic scheduler in this manner. We fur-
ther observed that the schedules discovered by the dynamic sched-
uler were remarkably stable suggesting a simple software only so-
lution to this performance issue: branch-after-mispredict in which
the front-end is redirected to an alternate version of the correct path
schedule which is optimized for the instruction readiness that oc-
curs during the mispredict recovery interval.

We also note (but do not show) that the combination of iCFP
and speculative scheduling support actually enables the enhanced
in-order to surpass the performance of the OOO in some cases. This
is due to the fact that while waiting for misses to return, the Execute
stage in the enhanced in-order only stalls when the ROB is full. In
contrast, the OOO is compelled to stall when the Instruction Queue
is full; practical designs generally feature Instruction Queues that
have a fraction (typically less than half) of the number of entries
contained in the ROB [24].

5. Discussion
The performance of our simulated machine with these harvested
schedules suggests that the dynamic flexibility of a full-blown
OOO processor is (expensive) over-kill and shows us some of the
architectural features a more statically-scheduled processor needs
to achieve similar performance.

5.1 Benefit of Dynamism
The primary advantage of a dynamic scheduler is that it can sched-
ule for the dynamically-exposed critical path, without having to
store and retrieve those schedules. The OOO gets many schedules

from a single set of instructions, while our in-order requires ex-
plicit schedules to be provided for every cache-miss and branch-
mispredict that it schedules after. While it seems likely that not
all of these schedules contribute significantly to performance, the
front-end which can support this combinatorial explosion of sched-
ules may be infeasible. We expect that profile-guided JIT compi-
lation could identify the critical misses and mispredicts, and even
provide reasonable code-growth, but these does not eliminate our
need for low-latency access to a second (or third, or fourth) sched-
ule to execute in the shadow of these unlikely events. The trade off
of dynamic scheduling is thus between bringing several schedules
to the execution core, or generating them on-site.

5.2 What mechanisms do inorders need to generate
OOO-like schedules?

Given the above, there are two pieces of the in-order architecture
that are missing.

The first is a scheme for decorating the instruction stream with
secondary schedules, to be used in the event of unexpected long-
latency events. In the case of a cache miss, this is akin to a “branch-
on-cache-miss” where control is revectored based on the hit signal
from the data cache similar to the mechanisms proposed in [23] and
[1]. This obviously has little advantage if the schedule cannot see
the use before the miss returns in addition to the more general prob-
lem of generating good miss-handling routines. The other mecha-
nism is a “branch-on-branch-mispredict”, where the schedule in-
jected in the front end of the machine might be different, based on
whether that path was predicted correctly, or it was the result of a
re-steer.

The second piece of the puzzle is a mechanism for doing soft-
ware alias speculation. The OOO uses a load-store queue to great
effect, dynamically teasing out dependencies through memory,
which allows for dynamic schedules that are aggressive where a
compiler must be conservative. A non-faulting memory instruction,
combined with a “branch-on-alias” would allow for the common-
case execution to reap the benefits of not-always-safe load hoist-
ing without sacrificing correctness. An OOO may also employ
alias-prediction hardware, but the overhead of software scheduling
adaptation in the presence of often-aliasing instructions may be
prohibitively expensive, so this prediction mechanism may still be
desirable (akin to branch prediction) in the in-order design.

6. Related Work
There is an extensive and venerable body of literature focusing
on the fundamental advantages and disadvantages of dynamically
scheduled hardware particularly in the context of attempting to
match the OOO’s performance with less complex hardware [4, 7,
30, 38, 44, 50]. While insightful and prescient in many respects
especially regarding the scalability of dynamically scheduled hard-
ware, the small memory footprints and low branch complexity of
the programs used for comparison purposes in these studies make it
challenging for the reader to discern what contribution dynamism,
independent of speculation support mechanisms, makes to overall
performance. Follow-on studies examined the static vs. dynamic
scheduling issue in the context of the emerging memory wall and
power-constrained but performance-intensive platforms [15, 39].
These works make strong arguments for a middle-ground between
statically and dynamically scheduled hardware particularly due to
perceived impending circuit limitations on OOO cycle times as well
as concerns over object compatibility with the proposed simpler
hardware.

Industry R&D [12] and academia [13] were exploring this
middle-ground between statically and dynamically scheduled hard-
ware, (“quasi-dynamic scheduling” in the parlance of rePLay[35])
while contemporaneous commercial processors at two extremes

were the Itanium [40] and Transmeta processors [27]. Both the Ita-
nium and Transmeta designs provide extensive hardware support
for software speculation; data and control speculation are facili-
tated by associative structures and non-trapping instructions that
the software can manipulate and query. Recovery from misspecu-
lation differs in that the Transmeta design features automatic HW
rollback [9] while Itanium exposes explicit rollback and recovery
to software. Subsequently, Itanium designs have refined/expanded
their HW structures to permit more control and data speculation
[31] and the most recently announced version has greater HW sup-
port for dynamism [48] in a manner explored by [6]. We also note
the encouraging trend of expanded HW support for software specu-
lation, specifically the HW transactional memory systems in IBM‘s
BlueGene/Q and Intel‘s forthcoming Haswell architecture [25].

Some form of transactional memory or HW atomicity is typi-
cally required [33] for quasi-dynamic scheduling but even a limited
form combined with specialized functional units can facilitate per-
formance comparable to a narrow-window OOO [8]. Though we
do not address it in this work, quasi-dynamic and static scheduling
all suffer from the region boundary issue that does not afflict the
OOO; the OOO’s ability to rotely eliminate control-flow and ob-
ject code barriers to hoisting instructions is difficult to match both
in theory [45, 49] and practice [17]. Matching the OOO’s perfor-
mance requires, at a minimum, the immensely challenging task of
devising good predictors that function on large regions [17] while
the HW support required to “region slip” is non-trivial.

Coping with memory operations remains problematic for both
static and quasi-dynamically scheduled machines as they are typi-
cally compelled to stall on the use of an unready register. Simply
finding sufficient instructions to cover load-to-use latency on an in-
order can be a challenge and can introduce complications as seen in
the mispredict recovery examples above. Some proposed solutions
include dispatching instructions to latency-specific queues based
on latency information encoded into the instructions at compile
time [18] to more dataflow oriented ISAs and associated HW [32]
though all come at the cost of significantly higher HW complexity
and instruction encoding bloat.

Solutions for handling variable latency loads in general purpose
in-orders range from the extremely aggressive hardware prefetch-
ers, software prefetching support and runahead execution of the
Power6 [5] to more modest compiler-inserted prefetch threads
which use an idle SMT context [26]. An excellent overview of runa-
head techniques that occupy the middle ground between these ex-
tremes is provided by [3]. We chose iCFP [22] due to its recentness,
its focus on in-order processors and the merits of its “rally” and “ad-
vance” modes which collectively enable it to outperform most rival
techniques in the literature. We found iCFPs treatment of imple-
mentation issues equally compelling, though probably the greatest
challenge facing runahead techniques is validation/verification. Fi-
nally, the microarchitectural substrate required to implement iCFP
(multiple, checkpointed register files, advanced store queue, etc)
could also provide HW support for software data and control spec-
ulation if these mechanisms were exposed at the ISA level.

Lastly, the observation that the OOO continually generates
high quality schedules has motivated several research efforts to
capture/re-use these schedules or to allow a compiler/runtime to
indicate when dynamic schedules should be generated. The ma-
jor motivation in this regard has been energy savings, [47, 49],
generally at the cost of performance degradation though off-the-
critical-path HW rescheduling of ROB traces in [34] yields a per-
formance speedup over the baseline OOO. It must be noted that
these approaches invariably execute a significant percentage of
their instructions via the dynamic scheduler (upwards of 70%, 45%
and 20% for [34, 47, 49] respectively) rather than executing the
captured OOO traces on the in-order HW . Our own experiments

suggest that even executing only 5% of bzip2’s instructions via
the dynamic scheduler enhanced performance by 18% relative to
executing all instructions on the in-order HW. Finally, a novel and
inspirational use of captured OOO schedules was demonstrated in
[11] in which programs destined to run on an in-order architecture
were first passed through a simulated OOO-version of the architec-
ture, their traces captured and then appropriately patched up (in the
form of compensation code for control/data misspeculation) to run
directly on the in-order architecture.

7. Conclusions
Out-of-Order processors generally attain higher performance on
control intensive integer code than in-order designs, including
those with hardware support for software speculation. Conven-
tional wisdom for this disparity in performance is the OOO’s abil-
ity to avoid head-of-line blocking and exploit far-flung memory-
level parallelism; collectively we call this ability “dynamism”; the
major enabler for dynamism is the OOO’s general-purpose, well-
provisioned speculation support mechanisms e.g. large ROB, re-
namer, Load/Store Queue etc which can rollback speculative state
at lower cost than even the most advanced in-order designs. We
demonstrated that nearly 88% of the speedup attained by the OOO
over an in-order design can be attributed to these speculation sup-
port mechanisms alone. Of the remaining performance differential,
a complexity-effective run-ahead mechanism, iCFP, was sufficient
to close the gap to the OOO in most cases. The final 1-2% per-
formance gap was found to be in the in-order’s inability to match
the OOO’s recovery after a branch mispredict; we proposed and
qualified a simple mechanism for addressing this deficiency.

8. Acknowledgments
We are deeply indebted to Naveen Neelakantam and Sara Bagh-
sorkhi, both of Intel Corp., for reviewing an early draft of this work.
We also thank the anonymous reviewers for their insightful com-
ments and suggestions. Daniel S. McFarlin was supported by an
National Defense Science and Engineering Graduate Fellowship.

References
[1] B. A. Babaian, S. K. Okunev, and V. Y. Volkonsky. Critical path

optimization–unload hard extended scalar block. USPTO 6584611,
2001.

[2] R. D. Barnes, J. W. Sias, E. M. Nystrom, S. J. Patel, J. N. Navarro, and
W.-m. W. Hwu. Beating in-order stalls with ”flea-flicker” two-pass
pipelining. IEEE Trans. Comput., 55(1):18–33, Jan. 2006.

[3] A. T. Brian Kreskamp, Pablo Montesinos. Enhancing mlp: Runahead
execution and related techniques. IACOMA Technical Report 512,
2005.

[4] M. Butler and Y. Patt. An investigation of the performance of various
dynamic scheduling techniques. In Proceedings of the 25th annual
international symposium on Microarchitecture, MICRO 25, pages 1–
9, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[5] H. W. Cain and P. Nagpurkar. Runahead execution vs. conventional
data prefetching in the ibm power6 microprocessor. In ISPASS, pages
203–212, 2010.

[6] L. Carter, W. Chuang, and B. Calder. An epic processor with pending
functional units. In H. Zima, K. Joe, M. Sato, Y. Seo, and M. Shi-
masaki, editors, High Performance Computing, volume 2327 of Lec-
ture Notes in Computer Science, pages 445–448. Springer Berlin / Hei-
delberg, 2006.

[7] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W.-m. W. Hwu. Compar-
ing static and dynamic code scheduling for multiple-instruction-issue
processors. In Proceedings of the 24th annual international sympo-
sium on Microarchitecture, MICRO 24, pages 25–33, New York, NY,
USA, 1991. ACM.

[8] A. Deb, J. M. Codina, and A. González. Softhv: a hw/sw co-designed
processor with horizontal and vertical fusion. In Proceedings of the
8th ACM International Conference on Computing Frontiers, CF ’11,
pages 1:1–1:10, New York, NY, USA, 2011. ACM.

[9] J. C. Dehnert et al. The Transmeta Code Morphing Software: Using
Speculation, Recovery, and Adaptive Retranslation to Address Real-
life Challenges. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 15–24, 2003.

[10] J. Doweck. Inside Intel Core Microarchitecture and Smart Memory
Access. Intel Whitepaper, 2006.

[11] M. Dupré, N. Darch, and O. Teman. VHC: Quickly Building an
Optimizer for Complex Embedded Architectures. In Proceedings of
the International Symposium on Code Generation and Optimization,
pages 53–64, 2004.

[12] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 26–37,
June 1997.

[13] B. Fahs et al. Performance Characterization of a Hardware Frame-
work for Dynamic Optimization. In Proceedings of the 34th An-
nual IEEE/ACM International Symposium on Microarchitecture, Dec.
2001.

[14] B. A. Fields, S. Rubin, and R. Bodik. Focusing processor policies via
Critical-Path prediction. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, pages 74–85, July 2001.

[15] J. Fritts and W. Wolf. Evaluation of static and dynamic scheduling
for media processors. In Proceedings of the 2nd Workshop on Media
Processors and DSPs, Micro ’00, 2000.

[16] J. S. Gardner. Mips aptiv cores hit the mark. Microprocessor Report,
May 2012.

[17] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill, S. W.
Keckler, D. Burger, and K. S. McKinley. An evaluation of the trips
computer system. In Proceedings of the 14th international conference
on Architectural support for programming languages and operating
systems, ASPLOS ’09, pages 1–12, New York, NY, USA, 2009. ACM.

[18] J. P. Grossman. Cheap out-of-order execution using delayed issue. In
Proceedings of the International Conference of Computer Design, CD
2000, pages 549 – 551, 2000.

[19] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. Synergistic processing in cell’s multicore architecture.
IEEE Micro, 26(2):10–24, Mar. 2006.

[20] T. R. Halfhill. Netlogic doubles up xlp. Microprocessor Report, April
2011.

[21] M. Heffernan. Data-Dependency Graph Transformations for Instruc-
tion Scheduling. PhD thesis, Massachusetts Institute of Technology,
2007.

[22] A. Hilton, S. Nagarakatte, and A. Roth. icfp: Tolerating all-level cache
misses in in-order processors. IEEE Micro, 30(1):12–19, Jan. 2010.

[23] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Inform-
ing memory operations: Providing memory performance feedback in
modern processors. In In Proceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, pages 260–270, 1996.

[24] Intel. Intel 64 and ia-32 architectures optimization reference manual.
Intel Technical Manual, 2012.

[25] Intel. Intel architecture instruction set extensions programming refer-
ence. Intel Technical Manual, 2012.

[26] D. Kim and D. Yeung. Design and evaluation of compiler algorithms
for pre-execution. In Proceedings of the 10th international conference
on Architectural support for programming languages and operating
systems, ASPLOS-X, pages 159–170, New York, NY, USA, 2002.
ACM.

[27] A. Klaiber. The Technology Behind Crusoe Processors. Transmeta
Whitepaper, Jan. 2000.

[28] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden.

IBM POWER6 microarchitecture. IBM J. Res. Dev., 51:639–662,
November 2007.

[29] D. J. Lilja. Reducing the branch penalty in pipelined processors.
Computer, 21(7):47–55, July 1988.

[30] C. E. Love and H. F. Jordan. An investigation of static versus dynamic
scheduling. In Proceedings of the 17th annual international sympo-
sium on Computer Architecture, ISCA ’90, pages 192–201, New York,
NY, USA, 1990. ACM.

[31] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture.
IEEE Micro, 23(2):44–55, Mar. 2003.

[32] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin,
and S. W. Keckler. Static placement, dynamic issue (spdi) scheduling
for edge architectures. In Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT
’04, pages 74–84, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[33] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware atomicity for reliable software speculation. In Proceedings
of the 34th International Symposium on Computer Architecture, pages
174–185, 2007.

[34] O. Palomar, T. Juan, and J. J. Navarro. Reusing cached schedules in an
out-of-order processor with in-order issue logic. In Proceedings of the
2009 IEEE international conference on Computer design, ICCD’09,
pages 246–253, Piscataway, NJ, USA, 2009. IEEE Press.

[35] S. J. Patel and S. S. Lumetta. rePLay: A Hardware Framework for
Dynamic Optimization. IEEE Transactions on Computers, 50(6):590–
608, 2001.

[36] S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing the
size of atomic instruction blocks using control flow assertions. In
Proceedings of the 33rd annual ACM/IEEE international symposium
on Microarchitecture, MICRO 33, pages 303–313, New York, NY,
USA, 2000. ACM.

[37] N. Ranganathan, R. Nagarajan, D. Jimnez, D. Burger, S. W. Keckler,
and C. Lin. Combining hyperblocks and exit prediction to increase
front-end bandwidth and performance. Technical report, 2002.

[38] B. R. Rau. Dynamically scheduled vliw processors. In Proceedings of
the 26th annual international symposium on Microarchitecture, MI-
CRO 26, pages 80–92, Los Alamitos, CA, USA, 1993. IEEE Com-
puter Society Press.

[39] K. W. Rudd and M. J. Flynn. Instruction-level parallel processors-
dynamic and static scheduling tradeoffs. In Proceedings of the 2nd
AIZU International Symposium on Parallel Algorithms / Architecture
Synthesis, PAS ’97, pages 74–, Washington, DC, USA, 1997. IEEE
Computer Society.

[40] H. Sharangpani and K. Arora. Itanium processor microarchitecture.
IEEE Micro, 20(5):24–43, Sept. 2000.

[41] J. L. Shin, H. Park, H. Li, A. Smith, Y. Choi, H. Sathianathan, S. Dash,
S. Turullols, S. Kim, R. Masleid, G. Konstadinidis, R. T. Golla, M. J.
Doherty, G. Grohoski, and C. McAllister. The next-generation 64b
sparc core in a t4 soc processor. In ISSCC, pages 60–62, 2012.

[42] G. Shobaki. Optimal Global Instruction Scheduling Using Enumera-
tion. PhD thesis, University of California Davis, 2006.

[43] G. Shobaki, K. Wilken, and M. Heffernan. Optimal trace scheduling
using enumeration. ACM Trans. Archit. Code Optim., 5(4):19:1–
19:32, Mar. 2009.

[44] M. D. Smith, M. Horowitz, and M. S. Lam. Efficient superscalar
performance through boosting. In Proceedings of the 5th International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 248–259, 1992.

[45] F. Spadini, B. Fahs, S. Patel, and S. S. Lumetta. Improving quasi-
dynamic schedules through region slip. In Proceedings of the inter-
national symposium on Code generation and optimization: feedback-
directed and runtime optimization, CGO ’03, pages 149–158, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[46] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton.
Continual flow pipelines. In Proceedings of the 11th international con-
ference on Architectural support for programming languages and op-

erating systems, ASPLOS-XI, pages 107–119, New York, NY, USA,
2004. ACM.

[47] E. Talpes and D. Marculescu. Execution cache-based microarchitec-
ture power-efficient superscalar processors. IEEE Trans. Very Large
Scale Integr. Syst., 13(1):14–26, Jan. 2005.

[48] S. Undy. Poulson: An 8 core 32nm next generation intel itanium
processor, 2011.

[49] M. G. Valluri, L. K. John, and K. S. McKinley. Low-power, low-
complexity instruction issue using compiler assistance. In Proceedings
of the 19th annual international conference on Supercomputing, ICS
’05, pages 209–218, New York, NY, USA, 2005. ACM.

[50] D. W. Wall. Limits of instruction-level parallelism. SIGARCH Com-
put. Archit. News, 19(2):176–188, Apr. 1991.

[51] M. T. Yourst and K. Ghose. Incremental commit groups for non-
atomic trace processing. In Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 38, pages 67–
80, Washington, DC, USA, 2005. IEEE Computer Society.

