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CHAPTER 1

Introduction

Conventional superscalar microprocessors have improved tremendously in performance, but still

meet several limitations in achieving maximum performance. First, a load that misses in the data

cache will wait many cycles for the value to arrive. Along with its dependent instructions, it will

tie up critical resources including physical registers and scheduler entries. Even though there is

often independent work that can be overlapped with the memory latency, many times the processor

must stall due to a blocked reorder buffer (ROB). Karkhanis and Smith report about 90% of cache

misses to memory result in a blocked ROB [1]. Second, accurate branch prediction remains essential

to keeping superscalar pipelines running efficiently. Modern branch predictors are very accurate

for most branches, but long pipelines result in many instructions having to be squashed in the

unfortunate case of a misspeculation. Aragon et al. report that “an average 8-wide processor

spends 47% of its total cycles fetching wrong-path instructions” [2].

Proposed future architectures like Continual Flow Pipelines (CFP) [3] effectively provide a

large instruction window that is able to tolerate long-latency cache misses. CFP introduces a non-

blocking register file and scheduler that off-loads miss-dependent instructions to a Slice Processing

Unit while the memory request is satisfied. As a result of this design, a single cache miss will

not likely cause a structural hazard, but instead, issuing can proceed with instructions that are

independent of the cache miss. This allows a CFP machine to service multiple cache misses in

parallel, achieving the desirable property of memory-level parallelism (MLP) [4]. When processors

with a high degree of memory-level parallelism eliminate pipeline stalls due to cache misses, branch

misspeculations will become a more acute limiter of system performance.
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Branch misspeculations are also responsible for significant energy and power costs in modern

microprocessors. Before a misprediction is resolved, many wrong-path instructions are fetched,

issued, and executed. These wasted instructions offer some benefit for prefetching future data

values and instructions, but the instructions themselves are eventually flushed from the pipeline.

Energy consumption of a processor is in part proportional to the number of instructions fetched,

so wrong-path instructions represent a significant waste of power and energy. Indeed, Aragon et al.

state “branch mispredictions are responsible for around 28% of the power dissipated by a typical

processor due to the useless activities performed by instructions that are squashed” [2].

We believe that CFP-style processors’ heightened misspeculation penalty in terms of power and

performance can be reduced through predicated execution.

Predicated execution is a mechanism by which microprocessors fetch and execute instructions

but conditionally commit the results based on a predicate value that evaluates to true or false. Pred-

icated execution is often used to eliminate conditional branches in a process called if-conversion.

Predicated execution is commonly studied in the context of EPIC architectures where it is largely

utilized to increase scheduling scope for statically scheduled machines like Intel’s Itanium 2 [5].

Dynamic predication, proposed by Klauser, et al. is an interesting exception for superscalar ar-

chitectures because it requires no support in the instruction set architecture (ISA) for predicated

instructions [6]. Instead, the predicated execution is performed dynamically by the register renamer

and pipeline back-end. This method is limited to the if-conversion of simple branch hammocks,

which are used to implement if-then-else statements.

In this thesis, our goal is to identify the control structures associated with frequently mis-

predicting branches in a modern out-of-order microprocessor. In Chapter 2, we classify these

frequently mispredicting branches into several categories, and suggest possible ways to improve

their predictability or remove the need for speculation entirely through predication. In Chapter

3, we suggest a series of profile-guided heuristics for selecting favorable branches to if-convert in

a modern out-of-order processor. In Chapter 4, we implement several profile-directed compiler

transformations to illustrate the predication mechanisms and our selection heuristics for decid-

ing when to employ them. Using microprocessor simulations, we measure the effectiveness of the
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transformations in reducing the misspeculation penalty in terms of energy and performance. In

Chapter 5, we summarize our results and discuss how predicated execution fits with future trends

in microprocessor design.
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CHAPTER 2

A Taxonomy of Mispredicting
Branches

The majority of branch mispredictions are caused by a small fraction of branches, the hard-to-

predict branches [7]. We compiled a list of branches with the greatest occurrence of mispredictions

for several benchmarks from the Spec2000 integer benchmark suite. We then observed program

control flow graphs and defined a set of common branch categories. We classified the mispredicting

branches according to these categories to determine how the mispredictions are distributed. Figure

2.1 shows the distribution of branch mispredictions by category. In this chapter, we describe the

categories in more detail. We also discuss ways to reduce the cost of mispredicting these branches

with predicated execution.

In this thesis, the branch structures we target for if-conversion are: simple hammocks, nested

hammocks, simple loop backedges (and their guarding branches), and conjunctive branches. While

Figure 2.1 shows a mixed representation for these branches among the Spec2000 integer benchmarks,

these branch structures contribute to over fifty percent of the overall mispredictions, on average.

Also, most of the benchmarks in Figure 2.1 have fewer than 10% of their branch instructions

contributing to over 99% of the branch mispredictions. We will focus on these hard-to-predict

branches in order to measure the effects of predicated execution on performance and energy.
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Figure 2.1 Branch mispredictions by category
We considered six Spec2000 integer benchmarks, as described in Section 4.1.

2.1 Hammocks

Simple hammocks represent if-then and if-then-else statements and are easy to if-convert with

instruction set architecture (ISA) support or by using dynamic predication. Half hammocks

implement if-then statements and full hammocks implement if-then-else statements. Simple

hammocks may not contain function calls or system instructions, which generally prohibit

predicated execution. Figure 2.2 shows an example of if-conversion for three hammocks.

Nested hammocks are composed of simple hammocks or other nested hammocks. Predicated

execution is more costly in the case of nested hammocks because there are more than two

paths to follow. It is not necessary to if-convert every branch in a nested hammock. Inner

branches may be highly biased and better left for speculation. However, if outer hammock

branches are if-converted, the bias of the inner branch may change unfavorably, as shown in

Section 4.3.2.

Complex hammocks are hammocks that include additional control structure before reconverging

at the join point. Nested hammocks are a special case of complex hammocks, but we dis-

tinguish between these cases because complex hammocks in general may contain an internal

loop or function call that makes if-conversion difficult to perform.
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Non-converging branches include hammocks that contain a return instruction at the end of one

of the control paths. Without a confluence of control paths, it is impossible to if-convert the

branch.
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Figure 2.2 If-conversion example for a half hammock (a), full hammock (b), and nested
hammock (c)

2.2 Loops

Backedge branches of loops that iterate many times are generally easy to predict, and loops that

iterate a constant number of times can be completely unrolled or run with zero-overhead loop in-

structions like those found in many embedded architectures. However, if a loop executes for a small

number of iterations and the trip count isn’t predictable, the backedge branch will be frequently

mispredicted. The misprediction penalty of these loops can often be lowered by combining loop

peeling with predication. Loop peeling is a technique similar to loop unrolling by which the body

of the loop is duplicated and specialized to execute the first or last iterations of the loop. Pred-

icating the peeled iterations eliminates the need to speculate on these hard-to-predict backedge

branches but comes with an overhead cost of having to fetch and execute unused iterations of the

loop body. Figure 2.3 illustrates a peeled loop where the second and third iterations are executed

unconditionally with the liveout values predicated on the union of the earlier exit conditions.
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As in the case of hammocks, loops must be free of function calls and system instructions for

predication to be a practical option. Loop peeling works best when the loop body is small with

little or no internal control flow, because there will be a lower penalty for an unused iteration. The

original version of the loop is kept as a successor to the final peeled copy for the case when trip

count exceeds the number of peeled iterations. The branch category labeled simple loop backedges

in Figure 2.1 represents loops with a single backedge branch and no internal function calls. Our

loop peeling study targets this class of backedge branches.

Most loops have a guarding branch that skips over the loop body when the loop should not be

entered. A guarding branch can be difficult to predict in situations where a loop varies between

entering and skipping over a loop. If the guarding branch is difficult to predict, it can be eliminated

by peeling the first loop iteration and if-converting the guarding branch. On the other hand, if the

guarding branch is highly biased, it may be better left for speculation.
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Figure 2.3 Simple loop with guarding branch (b)
Three iterations are peeled in addition to if-converting the guarding branch (c) or without

if-converting the guarding branch (a).

Loops are often nested with arbitrary breaks and continues. In general, it is impractical to peel

and predicate iterations from an outer loop. Branches that implement breaks and continues can

sometimes be merged with the backedge to improve their predictability as described in Section 2.3.
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The category other loop branches in Figure 2.1 represents branches from outer loops and from inner

loops containing calls.

2.3 Conjunctive Branches

Conjunctive branch is a term given to a group of branches commonly used to implement logical AND

or logical OR conditions. Sometimes the conditions in a conjunctive branch pair are individually

hard to predict but easier to predict as a unit. Therefore, it may be beneficial to coalesce these

conditions using comparison and logical operators. That is, the first branch is changed to point

unconditionally to the second block, and the second block is changed to branch on the aggregate

condition, as shown in Figure 2.4a. Care must be taken when there are side-effects performed

with the comparisons. The liveouts from the side-effect operations in the second block should be

predicated to ensure correct execution. Merging the two branches can create a hard-to-predict

branch in place of two easier to predict branches, so this transformation should not be performed

in every situation.

We define the common target block as the fall-out block. The fall-out block represents the true

destination for a logical OR condition or the false destination for a logical AND condition. We

define the second branch’s other successor as the advance block.

A

B

AdvanceFall-out

bb'

a'

a

   (a) B

AdvanceFall-out

a' || b' a && b

A Advance  
A

Fall-out

B

b'

a

ba'

   (a) B
A

Fall-out

a' || b'

a && b
a) b)

Figure 2.4 Conjunctive branch pair and breaking loop variant

A common variation of a conjunctive branch pair is a loop with an early exit condition. If

the early exit branch is difficult to predict, it may be advantageous to merge this condition with

the loop backedge as shown in Figure 2.4b. As with traditional conjunctive branch merging, it is
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necessary to predicate all liveouts defined after the early exit branch on the inverse of the early

exit condition.

Conjunctive branch pairs that contain a function call as part of the second basic block occur

frequently enough to be identified as a separate category in Figure 2.1. Branch-merging may not

be applied if there are memory or register side effects performed as a result of the function call.
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CHAPTER 3

If-Conversion Heuristics

We attempt to create a set of heuristics for identifying profitable hammock predication, loop peeling,

and conjunctive branch merging opportunities. We assume the availability of profile data to guide

our selections. Previous work contains an example of a profile-based if-conversion heuristic, where

the authors consider the trade-off between misspeculated cycles saved and lengthened schedule

height for a predicated region [8]. This heuristic is primarily focused on the schedule height of an in-

order processor like the Itanium. Other work has presented a profile-directed if-conversion heuristic

for out-of-order processors [9]. The authors developed a profile-based heuristic to be combined

with hammock-size and predictability methods for selecting profitable if-conversion opportunities.

They found the profile-directed heuristic outperformed the other methods in terms of reducing

mispredictions and overall cycles.

In this chapter, we extend this prior work to develop a more general if-conversion heuristic for

out-of-order processors, using cycle estimates of the fetching and execution latencies imposed by

predication. We do not limit our consideration to hammock structures, but extend our reasoning

to consider loop peeling and conjunctive branch coalescing. We also consider the change in net

predictability brought about by the branch transformations, where applicable. In contrast to

the static instruction scheduling required by an in-order processor, instructions in an out-of-order

processor are scheduled dynamically, making the relationship between performance and the compiler

schedule less clear. We model two primary factors of if-converting code: 1) the added cost to

fetch wrong-path instructions that will be nullified, and 2) the added cost to execute wrong-path

temporaries that will be replaced with a correct-path liveout. Both factors potentially lengthen the
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critical path to negate the benefit of cycles recovered from branch mispredictions.

In Section 3.1, we describe predication mechanisms commonly implemented in out-of-order

processors and how this influences the cost of predicated execution. In Sections 3.2, 3.3, and

3.4, we apply critical-path reasoning to develop heuristics for predicating hammocks, peeling loop

iterations, and unifying conjunctive branches.

3.1 Predication Mechanisms in Out-of-order Processors

Predicated instruction set architectures support either full or partial predication [10]. Full pred-

ication indicates most instructions contain a source operand specifying a predicate value. If the

predicate is evaluated as true, the instruction will commit its result; however, a false predicate

causes the the instruction to be nullified without changing the program state. The IA64 architec-

ture, for example, supports full predication with sixty-four single-bit predicate registers that are

used to guard the execution of most instructions. Full predication is normally implemented on

in-order processors due to the complexity of tracking conditional definitions in the register renamer

of an out-of-order machine [8].

Partial predication delivers support for predication in the form of conditional move (cmove) or

select instructions. Depending on its predicate specifier, a select instruction chooses one of two

source operands to write to its destination. A conditional move instruction has a single source

operand and a predicate operand. If the predicate is true, the cmove will copy the source register

value to the destination register. If the predicate is false, the cmove instruction behaves as a no-op.

The Alpha ISA is an example of a partially-predicated ISA that supports conditional moves.

In this study we use the Alpha ISA as our compiler target and simulation ISA. Using conditional

moves, we are able to conditionally execute most machine operations. When generating code, we

perform a compiler analysis to determine which instructions generate liveout values from a block.

Each liveout value in a predicated code region is first written to a temporary register. If the

predicate is true, a cmove instruction copies the temporary value to the correct liveout register.

Non-liveout values do not need to be predicated. When deciding if predication is profitable in a

partially-predicated environment, we must account for the overhead of conditional move instructions

11



inserted to predicate liveout values.

Store instructions are also considered to be liveout values and can also be predicated using

conditional moves. The cmove guards the store’s effective address. If the store is executed with

a false predicate, the cmove will replace the effective address with a safe memory location where

the value will be stored without affecting program state. In our simulation environment, we chose

this location to be the null address. In general, it is important for the processor to support non-

excepting instructions. Predicated code potentially accesses illegal memory addresses, divides by

zero, and overflows value bounds. Therefore, these events should not terminate execution when

caused by an instruction with a false predicate.

3.2 Hammock Selection

When deciding whether a hammock should be predicated, we consider whether the benefit of

reducing mispredictions outweighs the cost of added instructions and critical path elongation. The

average cycle cost of speculating on a hammock branch is simply the probability of mispredicting the

branch times the misprediction latency of the machine. Obviously, there is no benefit to predicating

a branch that is seldom misspeculated.

On the other hand, there are several factors to consider in estimating the average cycle cost of

predicating a simple hammock:

1. When instructions following the hammock are independent of hammock liveouts, the primary

cost of predication is the greater latency to fetch these independent instructions. We estimate

this latency by averaging the number of overhead instructions on the wrong path over all

hammock executions and dividing by the machine’s instruction fetching width.

overheadfetch = (average wrong path length + average inserted cmoves)/IF width (3.1)

2. When hammock contexts are imbalanced and instructions following the hammock depend on

one or more hammock liveouts, the cost to execute the wrong path is dominant. If these
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liveouts are defined on the shorter hammock path, predication lengthens the time until the

value becomes available by requiring execution of wrong-path instructions and a conditional

move. Figure 3.1 illustrates this lengthened dependency height. If we assume the hammock

liveout definition is on the critical path, we can approximate the execution overhead imposed

by predicated execution by:

overheadexecute = max(average wrong path height − average correct path height , 0)+1 (3.2)

Wrong path height represents the height of the longest dependency chain for a liveout defi-

nition on the wrong path. Similarly, correct path height represents the height of the longest

dependency chain for a liveout definition on the correct path. These values must be weighted

by execution frequency and subtracted to find the overhead cycle cost to execute the wrong-

path instructions. One instruction is added to the liveout height difference to represent the

conditional move instruction used to specify the correct liveout value.

if (node) {
  parent = node->parent;
  uncle = parent->brother;
  age = uncle->age;
}
else {
  age = self->age;
  age = age + 1;
}

ldw parent->brother ldw self->age

ldw node->parent

 v0=ldw uncle->age t4=add age, 1

v0=cmoveq node ? t4

Figure 3.1 Predication lengthens liveout dependency chain height
If the then clause is the correct path, predication lengthens the dependency height by one. If the

else clause is the correct path, predication lengthens the dependency height by two.

We conservatively estimate the predication cost of a hammock as the maximum of the costs

defined in equations 3.1 and 3.2. When the speculation cost exceeds the predication cost, the

hammock should be marked for predication. Predication can offer additional benefits not mod-
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eled in our selection heuristic, including exposing common subexpressions for reduction. Also, if

a hammock is small, predicating it may allow the processor to fetch the entire hammock body

contiguously for a performance gain. We found in our experiments that overheadfetch tends to

dominate overheadexecute , except in certain instances of small half hammocks.

Nested hammock execution is influenced by the same characteristics as simple hammock exe-

cution. That is, nested hammock liveouts may not be used immediately, causing the number of

instructions fetched on the wrong paths to delay the fetching of more critical instructions following

the hammock. In this case, the average wrong-path length must be weighted according to the exe-

cution frequencies of all paths through the nested hammock. Alternately, nested hammock liveouts

may be used soon after they are defined, causing any delay in production of the liveout to stall

the execution of the liveout’s consumer. The dependence height of the correct-path liveout must

be compared to the liveout’s dependence height on all other paths, weighted by their execution

frequencies.

Nested hammocks have the added characteristic of containing internal branches that may or

may not be predicated. Speculating on easy-to-predict inner branches may reduce the instruction

overhead of if-conversion. On the other hand, the presence of inner branches may restrict the

freedom of the static code scheduler to efficiently place and combine instructions. We investigate

this trade-off in Section 4.3.2.

3.3 Loop Selection

As with hammock predication, determining the optimal number of loop peels involves balancing a

trade-off between reducing the number of branch mispredictions and lengthening the critical path

by requiring the processor to fetch and execute unneeded wrong-path instructions. We approximate

the benefit of peeling n iterations of a loop by:

benefit(n) = misprediction latency × (
n∑

i=0

mispsi −min(
n∑

i=0

tripcountsi ,
∞∑

i=n+1

tripcountsi)) (3.3)
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mispsi is the number of mispredictions occurring on trip i of the loop, and tripcountsi is the

number of times the loop exited on the ith iteration. This expression measures the number of

backedge mispredictions that are saved through peeling. From this savings, we must deduct the

number of mispredictions added to the skip-over branch that skips over the loop body when no

iterations are required beyond the peeled iterations. We estimate the number of mispredictions for

this branch by assuming it is correlated to the branch’s bias. Loop peeling may not be profitable

in cases where it introduces a hard-to-predict skip-over branch.

The overhead of peeling n iterations from a loop is represented by:

overheadfetch(n) =
peel size
IF width

×
n−1∑
i=0

(n− i)× tripcountsi (3.4)

overheadexecute(n) = (max liveout height + 1)×
n−1∑
i=0

(n− i)× tripcountsi (3.5)

overhead(n) = max(overheadfetch(n), overheadexecute(n)) (3.6)

peel size is the number of instructions that comprise a peeled iteration. In many cases it is

overly conservative to estimate this value as the size of the loop body due to the effects of constant

propagation and dead code elimination on the peeled code. IF width represents the number of

instructions fetched per cycle. max liveout height is the length of the longest dependency chain

for a liveout definition in the loop body, with one extra link for the guarding conditional move

instruction that is added to each peeled iteration. tripcountsi is the number of times the loop

exited on the ith iteration. Note that exits after few iterations (i.e., low trip counts) become more

costly in terms of fetch and execution latency as the peeling factor n is increased. tripcounts0 is

defined as the number of times control skips over the loop via the guarding branch, which contributes

to the overhead costs only if the guarding branch is if-converted. If the guarding branch is not

if-converted, the sums in equations 3.3, 3.4, and 3.5 should begin at one instead of zero.

We can determine the optimal number of loop iterations to peel by finding i that satisfies

maxi(benefit(i)− overhead(i)). This selection heuristic does not take into account the positive

side-effects of wrong-path prefetching[11]. For example, a mispredicted hammock branch within a

loop will often prefetch data values for future loop iterations of the current loop or of a subsequent

15



loop. In determining the optimal number of iterations to peel, our heuristic does not consider the

code-expansion pressure placed on the instruction cache, although we expect this to be low since

generally only small loops are viable for peeling.

3.4 Conjunctive Branch Selection

When deciding whether to coalesce the branches of a conjunctive branch pair, it is vital to know

whether the predictability of the combined branch improves on the predictability of the pair. An

improvement in predictability may result from an improvement in branch bias, an improvement in

branch correlation, or both. We continue to consider two sources of overhead latency: the added

instruction fetching burden and the lengthened dependency chain required for predicated execution.

In the conjunctive branch in Figure 3.2, block A is executed unconditionally and does not

contribute to an overhead cost. Block B presents an instruction fetch overhead only when branch

A would have proceeded to the fall-out block. The probability of this event is pfall out(a). cmoves(B)

is the number of conditional move instructions required to predicate block B’s liveout values. The

conditional moves present an overhead fetching cost regardless of branch A’s outcome. There may

be an overhead execution cost for the combined branch if branch A would have proceeded to the

fall-out block. B’s side-effect instructions may have a greater dependency height than A’s side

effect instructions. As in the previous heuristics, we must add one for the cmove that conditionally

defines the result. We estimate the overhead of merging branches A and B as the maximum of

these overhead costs.

merge overheadfetch =
size(B)pfall out(a) + cmoves(B)

IF width
(3.7)

merge overheadexecute = max(max height(B)−max height(A), 0 )pfall out(a) + 1 (3.8)

merge overhead = max(merge overheadfetch ,merge overheadexecute) (3.9)

Intuitively, the conjunctive pair should be combined for a performance gain when the number of

cycles saved by fewer misspeculations outweighs the overhead of fetching and executing unnecessary
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instructions. This is expressed more formally in equation 3.10. p(a) is the probability that control

reaches block B. pmisp(x ) represents the probability that branch x is mispredicted.

misprediction latency × (pmisp(a) + p(a)pmisp(b)) > (3.10)

misprediction latency × pmisp(ab) + merge overhead

A

B

AdvanceFall-out

bb'

a'

a

AB

AdvanceFall-out

a'+b' b

Figure 3.2 Improving branch bias by combining branches

Knowing when and how merging conjunctive branches will improve the misprediction rate,

pmisp , is less clear. Difficult-to-predict branches often have misprediction rates that correspond to

their branch biases1. Clearly, this rate will not exceed 50% in the long run, or the predictor could

choose the opposite direction for greater accuracy.

If we consider a conjunctive pair of hard-to-predict branches A and B in Figure 3.2, when will

merging the branches improve the net bias? Branch A is taken a′ times out of a + a′ and branch B

is taken b′ times out of b + b′. Assuming branch A and B are predicted according to branch bias,

the total number of mispredictions will be min(a, a′) + min(b, b′). Assuming the combined branch

is predicted according to its bias, it will be mispredicted min(b, a′ + b′) times. Therefore, branch

combining in this scenario offers a misprediction savings of:
1A concrete example of conjunctive branch pairs with this property appears in Section 4.5. In all intervals except

interval 2, each branch in this structure is predicted with an accuracy that is within 5% of the branch bias. For these
branches, improving the net bias translates to a savings in the number of mispredictions. The exception in interval
2 occurs when branch X is mispredicted only 2.5% of the time while it is taken 18.9% of the time.
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Misprediction savings = min(a, a′) + min(b, b′)−min(b, a′ + b′) (3.11)

This value is positive as long as a′ + b′ > (a + a′)/2. That is, a conjunctive branch pair must

have a net bias toward the fall-out block for branch combining to expose this bias for a gain in

predictability. It is important to consider the added instruction overhead and liveout delay caused

by the branch-merging transformation, which may offset the branch misprediction savings. This

can be determined from equation 3.10, where pmisp(ab) becomes min(b, a′ + b′)/(a + a′).

It is also important to consider the opportunity to improve a branch’s predictability through

correlation for conjunctive branch pairs. Figure 3.3 shows an example from benchmark 254.gap

where branch 3 is the second branch in a conjunctive pair. The condition of branch 3 matches the

condition of earlier branch 1. The heavy lines trace the dominant path through this region, which

indicates that control frequently passes over branch 3. Even though branch 2 is biased toward

the fall-out block, it is still responsible for many mispredictions. Combining the conjunctive pair

in this case will expose the hidden branch correlation between branches 1 and 3 for a net gain in

predictability.

if (b)

if (a)

if (b)

AdvanceFall-out

FT

T

F

T

F

if (b)

if (a || b)

AdvanceFall-out

T

T

F

F

Branch 1

Branch 2

Branch 3

Branch 2,3

Branch 1

Figure 3.3 Improving branch correlation by combining branches
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CHAPTER 4

Evaluation

To investigate the impact of predicated execution on out-of-order processors, we created a “stan-

dard” feedback-directed optimization (FDO) system, which means we collect profile data to direct

the code transformations of a traditional compiler, rather than an “online” FDO system, which

integrates profiling and re-compilation functions and performs them at runtime. We describe our

system in Section 4.1. In Sections 4.3, 4.4, and 4.5, we examine the effectiveness of our profile-

directed transformations on reducing the misprediction penalties associated with hammocks, loops,

and conjunctive branches in certain Spec2000 integer benchmarks.

4.1 Experimental Setup

Source GCC front-end

LLVM IR
(1)

LLVM (2)

LLVM (4)

 baseline 
executable

branch map

profiling  stats

 optimized 
executable

Functional 
simulator

(3)

Timing 
simulator

(5)
performance, 
energy  stats

Figure 4.1 Flow chart of our feedback directed optimization (FDO) setup

Figure 4.1 illustrates the composition of our feedback-directed optimization system. This work

was done in the context of the LLVM compiler and a SimpleScalar-based simulator. Our experi-
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ments involved two phases: 1) a profiling phase to collect data for applying the selection heuristics

from Chapter 3, and 2) an experimental phase where we transformed code regions in response to

the heuristics and evaluated the performance and energy gains. Because we are using profile-based

if-conversion, it was important to have a mechanism for relating profiled branches in the generated

code to the branch instructions in the compiler’s internal representation (IR). Below, we discuss

the components of this infrastructure and then walk through our experimental method.

We chose the Low-Level Virtual Machine (LLVM) compilation framework to implement our

analyses and code transformations [12]. LLVM is a virtual instruction set and compiler back-end

with many sophisticated features that were used in this study:

� Convenient static single-assignment code representation, with a rich set of pre-existing opti-

mization passes

� GCC-based front-end support for compiling C and C++ code

� Back-end support for the Alpha ISA, enabling the use of SimpleScalar-based simulation tools

� Support for predicated execution with a built-in select statement in the internal representation

(IR).

� Existance of a PC marker identifier to associate a branch in the generated code with a branch

in the IR structure

� Helpful documentation and assistance for adding new features

In Figure 4.1, steps 1 and 2, we compiled the Spec2000 integer benchmarks to LLVM bytecode

and created analysis passes to identify the previously described branch structures. We annotated

every basic block in the program with a unique PC marker intrinsic instruction. This marker

passes through to the generated code as a symbol in the object file and serves to associate the

LLVM basic block structure with the instruction address of its terminating branch. For each

benchmark considered, we created a branch map containing the PC marker identifiers from the

IR and their associated branch instruction addresses in the generated code. This branch map was

used to track the higher-level branch structures for profiling and transformation.
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To collect branch statistics, we modified a functional simulator from from the SimpleScalar

simulation infrastructure for Alpha ISA [13]. The functional simulator is given the PC marker

branch map as an input file. In step 3, the functional simulator observes these branches and

tracks their prediction behaviors during the benchmark simulation. For a hammock structure, the

simulator records branch mispredictions and bias values in addition to the number of conditional

move and wrong-path instructions that would be executed if the hammock were if-converted. In

the case of loops, the functional simulator records trip counts and misprediction data. Conjunctive

branches are observed to determine if combining the branches would improve the net predictability.

The profile-based if-conversion heuristics use this profile data to determine whether a branch should

be if-converted. In step 4, we generated an optimized executable in response to the heuristic

outcome.

Because our goal in this study was to explore the impact of branch transformations on perfor-

mance and energy, we chose to focus our transformations on a single branch for each experiment.

In contrast to measuring aggregate results for many transformations in a benchmark, we hoped

this would give greater insight about the veracity of our if-conversion hypotheses. For each branch

we were studying, we generated and tested other code versions in addition to the heuristic choice

to learn if the heuristic was choosing the best branch transformation to apply. The branches we

select are from the following six benchmarks, which represent the subset of Spec2000 integer bench-

marks that runs in our simulation infrastructure: 164.gzip, 181.mcf, 186.crafty, 197.parser,

256.bzip2, and 300.twolf.

In step 5, a SimpleScalar-based out-of-order microprocessor timing simulator is used to measure

the performance effects of the branch transformations. The timing simulator is highly configurable,

and we selected parameters that are representative of a modern-day superscalar processor. Our

primary configuration features a 4-wide instruction fetching width and a 128-entry register update

unit (RUU) that is comparable to the instruction window sizes of current superscalar processors.

We also considered a 4096-entry RUU to represent the instruction window size of a future CFP-like

machine. In our simulations, however, we did not observe a high enough incidence of L2 data

cache misses to cause a significant performance difference between the two configurations. L2 cache
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misses to main memory are the primary bottleneck that large-window machines like CFP attempt

to mitigate, and a lack of L2 cache misses lowers the MLP-effectiveness of a large-window machine

running these benchmarks. In light of this observation, we decided to omit the 4096-entry RUU

configuration from the evaluation. To measure the impact of the transformations on CPU energy

usage, we used the Wattch [14] component for SimpleScalar. Energy numbers for Wattch are

reported from the cc 3 non-ideal clock gating measurement.

The branch predictor is a combined two-level and bimodal predictor. The two-level predictor

has a 4096-entry table size and 8-bit history register. The bimodal table size is 2048 entries and the

meta-table size is 1024 entries. The branch target buffer and return address stack are simulated as

perfect. The minimum branch misprediction penalty is 12 cycles. We configured a 32KB, 2-way

associative L1 data cache and a 64KB, 4-way associative L1 instruction cache. The L2 cache is 1MB

in size, 4-way set associative, and guards a 200-cycle latency to main memory. Our configuration

uses a perfect memory dependence predictor.

4.2 Path Length Determination

Different versions of code will have varying path lengths, and it is important for comparison to

ensure that each version is performing an equivalent amount of work. One way to ensure this

is to run the benchmarks from start to completion, but this approach was prohibitive under our

simulation environment. Instead, we maintained a data structure in the functional simulator that

tracked the access count of each branch it was observing. We modified the simulator to output the

number of times each branch had been visited since the simulation began in periods of 100 million

instructions. Because our peeling transformations will alter the number of iterations in a loop, we

tracked the number of times control arrives at each loop rather than how many times its backedge

branch was visited. An example of this counting method is shown in Figure 4.2.

We used the access count information to designate start and end points in the baseline and

if-converted code. From our profile data and access counts, we selected three trace intervals to

simulate. We selected these three intervals to represent a range of misspeculation levels for the

program phases in which the branch is active. The start point in each interval is identified by the
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Access counter for loop 205:
  100M: 153091
  200M: 323299
  300M: 441921
  400M: 560132
    ...

Loop 205

ingress

egress

Figure 4.2 Example of counting method for ensuring equal path lengths.
The access count for loops is measured at the ingress point. This value will not change when the

loop is peeled.

branch structure’s access count at the start of the interval; the end point is marked by the branch

structure’s access count at the end of the interval. The path length of the predicated code will

vary depending on the number of wrong-path instructions that result from predication. Because

the baseline and optimized code versions start and stop at corresponding branch instructions, we

can measure performance and energy gains by directly comparing their cycle times and energy

measurements.

4.3 Hammock Evaluation

In this section, we evaluate the effectiveness of our hammock selection heuristic. It is worth noting

that the LLVM tail duplication pass caused many hammocks to be transformed into non-converging

branch structures. Tail duplication attempted to replace the unconditional branches to the join

point with copies of the join code itself. To facilitate our study, we modified the tail duplication pass

to exclude hammock structures from consideration. This had a negligible impact on performance

and opened up additional predication opportunities. We did not alter the primary function of tail

duplication in LLVM, which is to rotate loop branches into do-while form.

Each experiment in our evaluation is represented by four data points. The first three columns

compare the number of cycles, path length, and energy consumption to those measurements in the

baseline configuration. The fourth column compares the ratio of instructions fetched to instructions
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committed between the two configurations. This ratio correlates to misprediction rate.

4.3.1 Simple hammocks

In Figure 2.1, we identified that simple hammocks contribute to a high occurrence of mispredic-

tions in benchmarks 181.mcf (18%) and 300.twolf (39%). We if-converted seven hammocks that

account for the majority of these mispredictions and found that predication offers a performance

gain in almost every case, as shown in Figures 4.3 and 4.4. According to the if-conversion heuristic

presented in Section 3.2, six of the seven branches should be if-converted for a gain in performance.

The heuristic correctly indicates hammock 262 in 181.mcf should not be predicated due to its low

misprediction rate and high wrong-path instruction fetching overhead, which average 7.8% mispre-

dictions and 12 overhead instructions fetched, respectively. We observed hammock 262 in 181.mcf

to show inconsistent gains with a large slowdown in the third trace interval. This interval represents

a median level of prediction accuracy (98%) for the hammock branch, while intervals one and two

represent periods of uncharacteristically poor predictability (<90%).

In Figures 4.3 and 4.4, we list dynamic instruction coverage for each hammock to provide context

for its execution frequency. It is interesting to observe hammocks showing consistent energy savings

after if-conversion are the ones that have the highest speculation costs. Hammocks 262 and 276 have

the lowest speculations costs, with misprediction rates of 7.8% and 15.5%. These misprediction

rates are not high enough for predication to overcome the added energy cost of executing both

paths through these hammocks. Even though the heuristic indicates that if-converting hammock

276 is profitable, it correctly estimates a smaller gain for if-conversion of this hammock than it does

for any of the other profitable hammocks in this experiment.

4.3.2 Nested hammocks

For nested hammocks, we studied two structures responsible for a large number of mispredictions

in benchmarks 164.gzip and 186.crafty.

The nested hammock shown in Figure 4.5 is found in one of the most active code regions in the

164.gzip benchmark. The outermost branch 45 is heavily biased to skip over the inner hammocks.
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Figure 4.3 Results for if-converting simple hammocks in 181.mcf
The trace intervals for hammock 220 do not correspond to those of hammocks 262 and 276.

Hammock coverage is measured as a percent of the overall dynamic instructions in the interval.
In the intervals we measured, the hammock coverage for hammock 220 averaged 14.2%.
Hammock 262 averaged 13.5% coverage and hammock 276 averaged 2.73% coverage.
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Figure 4.4 Results for if-converting simple hammocks in 300.twolf
Hammock coverage is measured as a percent of the overall dynamic instructions in the interval.

In the intervals we measured, the hammock coverage for hammock 1016 averaged 1.13%.
Hammock 1018 averaged 1.62% coverage. Hammocks 1029 and 1031 averaged 2.10% coverage and

2.80% coverage, respectively.
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The extra work required to fetch the inner region’s instructions dominates the savings in wrong-path

cycles. However, the middle branch 46 has an even bias, and is a good candidate for if-conversion.

Figure 4.6 shows modest performance gains when the middle branch is if-converted by itself or with

the inner branch 47. Our selection correctly selects branches 46 and 47 for if-conversion and passes

on branch 45.

loopentry.0: 45
T F

shortcirc_next.0: 46
T F

27626617

shortcirc_done.2: 49
T F

281379654

13680491

shortcirc_next.1: 47
T F

13946126

2543514
shortcirc_next.2: 48

 

11402612

11402612

Figure 4.5 Control flow graph for nested hammock from function longest match in
164.gzip

Function FirstOne in 186.crafty returns the position of the first non-zero bit in a 64-bit value

by splitting the value into four 16-bit words and using the first non-zero word to index into a

lookup table containing the correct value to return. The control structure for this function is

a nested hammock with four branches. The first three branches in Figure 4.7 are responsible

for nearly 20% of the overall branch mispredictions in 186.crafty. The final branch is heavily

biased and does not represent a misprediction burden. Mainly because of the high instruction

fetching overheads calculated by the heuristic, none of these hammock branches were selected for

if-conversion. However, this did not account for the greater freedom allowed for the static code

scheduler to place and combine instructions in if-converted code. Our simulations confirmed that
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Figure 4.6 Results for if-converting nested hammocks in function longest match
In trace interval 1, the instructions in the hammock were responsible for 13% of the dynamic
instructions. In intervals 2 and 3, the instructions accounted for 18% and 26%, respectively.

if-conversion is beneficial for this nested hammock, contrary to the heuristic result.

We evaluated all combinations for if-converting the set of branches and found the best per-

forming combination to be the case of if-converting all branches including the final branch D.

If-converting each of the three difficult branches A, B, and C is also a good option, but presents

an interesting trade-off: the predictability of branch D becomes worse when it is unguarded by

branches A, B, and C. As shown in Figure 4.8, branch D is visited much more often in this case.

Because branch D’s condition is independent of the conditions for A, B, and C, the additional

executions result in a weaker bias for branch D than when it was guarded by branches A, B, and C.

It is important to keep in mind that predicating outer branches in a nested hammock may influence

the predictability of inner branches. This property is known as misprediction migration [15].

To maintain D’s favorable bias, we merged branch D’s condition with the logical AND of the

branch conditions for A, B, and C. As shown in Figure 4.9, merging the branch condition improved

the predictability and performance over the unmerged case, but also raised the instruction count

with the added AND instructions. The final half hammock contained only one instruction besides
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entry : A
T F

endif.0 : B
T F

86492406

then.0
 

32889673

endif.1 : C
T F

67978871

then.1
 

18513535

UnifiedReturnBlock1

32889673
endif.2 : D
T F

46401517

then.2
 

21577354

18513535

90
then.3

 

46401427

21577354

46401427

Figure 4.7 Control flow graph for function FirstOne in 186.crafty

entry: ABC
 

endif.2: D
T F

119382079

UnifiedReturnBlock

62879882
then.3

 

56502197

56502197

Figure 4.8 Example of changing inner branch bias due to if-conversion in function
FirstOne
Notice the change in bias of branch D after if-converting branches A, B, and C which results in

misprediction migration.
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the branch. Our results indicate that if-converting the final branch offered greater static code

scheduling freedom without the overhead to fetch and execute a large number of extra instructions.

Another interesting finding shown by Figure 4.9 is that better performance does not always

correlate with energy savings. The widening discrepancy between cycles and energy in the last

four columns shows that the energy cost of the increased path length outweighs the energy savings

resulting from fewer branch mispredictions.
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Figure 4.9 Results for if-converting nested hammocks in function FirstOne
The column labeled A,B,C* represents the case where branch D’s condition was combined with

the conditions of branches A, B, and C for a gain in performance over the uncombined case
A,B,C. The instructions in this nested hammock are responsible for around 6.0% of the dynamic

instructions in the trace intervals we simulated.

4.4 Loop Peeling Evaluation

As shown in Figure 2.1, we found that many branch mispredictions occur among simple loop

backedges in benchmarks 181.mcf (22%) and 300.twolf (46%). We selected five backedge branches

that are responsible for a majority of these mispredictions and tested a range of loop peeling factors.

Loop 265 in Figure 4.10 is a backedge that loops around full hammock 262 from Section 4.3.
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The backedge branch is responsible for nearly 15% of 181.mcf’s mispredictions. In order to isolate

the effects of loop peeling, we do not predicate the internal hammock in this experiment.

For the first interval, the best performance gain is obtained for one peel. Our heuristic incor-

rectly estimated no benefit for loop peeling in this interval, but it did not account for the 2% shorter

path length resulting from the removal of dead instructions in the peel. The fourth bar indicates

loop peeling does not provide an overall misprediction savings in this case. The heuristic correctly

estimates a optimal peeling factor of two for the second and third intervals. Through simulations,

we verified this selection provides a performance and energy return in both cases. The trip count

distribution for the third interval shows peeling two iterations removes the need to enter the loop

body for most executions (over 85%), enabling a 5% performance gain and 3% energy savings.

Loop 275 is made up of a single basic block that is part of a partitioning operation in 181.mcf’s

quicksort implementation. It is responsible for 6% of the overall branch mispredictions in this

benchmark. The guarding branch is frequently mispredicted and by if-converting this branch, we

are able to obtain the speedup shown in column 0 of Figure 4.11. Our loop peeling heuristic

correctly indicated the guarding branch should be predicated, but no additional peeling should be

performed. However, our tests show peeling one or two iterations in addition to if-converting the

guarding branch offers a slight additional savings in cycles and energy. Both loop peeling examples

from 181.mcf show that energy usage is closely correlated to the program’s path length.

Loops 1036, 1038, and 1040 in 300.twolf are consecutive single-block loops found in function

new dbox a in 300.twolf. They combine to cause over 13% of the mispredictions in this benchmark.

As shown in the right side of Figures 4.12, 4.13, and 4.14, the three loops in this function have the

characteristic that the backedge branch is mispredicted more than once per loop exit, on average.

Loop 1036 is an interesting example that shows how loop peeling benefits from constant propa-

gation. Figure 4.12 shows there is a savings in path length even for peeling factors that exceed the

loop’s average trip count. The induction variable in this loop is a counter that is initialized to zero.

With constant propagation, the peeled iterations are able to perform a series of constant-indexed

loads rather than adding to a base address. This eliminates three add instructions per iteration for

a loop body that began with only seven instructions. In general, constant propagation and dead
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code elimination help specialize the peeled iterations for greater efficiency. We found our model

was often too conservative in estimating the best peeling factor. This is especially apparent in this

example. The heuristic chose to peel eight iterations, but there are greater performance gains at

fifteen peels.

Loop 1038 is very similar to loop 1036, except it traverses an array in reverse order, preventing

the simpification of as many instructions through constant propagation. Our heuristic suggested a

peeling factor of eight for this loop, which is near-optimal for performance, as we show in Figure

4.13. Energy consumption is more directly affected by the increasing path length than the number

of mispredictions saved, and we measure the best energy savings when the loop is peeled six times.

It is not clear why a peeling factor of three affects performance and energy differently than the

other peeling factors, but it appears to be a result of the particular combined 2-level and bimodal

predictor configuration used in the simulator. We were able to eliminate this discontinuity in the

branch misprediction rate by changing our predictor configuration to use a similar bimodal/local

branch predictor.

In Figure 4.14, loop 1040 has a more even trip count distribution than the other loops, which

helps limit its path length explosion until peels seven and eight. In this example, energy consump-

tion leads path length growth as the peeling factor is increased. The heuristic selected a peeling

factor of two for this loop, but the best performance improvement was measured at five peels.

Like the other loops in 300.twolf, the peel size in loop 1040 is significantly reduced by constant

propagation and dead code elimination.

As indicated in the examples, our loop peeling heuristic lacks the ability to quantify the posi-

tive effects of constant propagation and dead code elimination. Even without accounting for this

factor, our heuristic identified peeling factors that resulted in a positive performance gain in almost

every case. We also observed a trend that energy consumption correlates more closely with path

length than with the number of mispredictions saved. Loop peeling is an effective optimization for

lowering energy consumption insofar as it enables the path length to be reduced through constant

propagation and dead code elimination.
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Figure 4.10 Loop peeling factors for loop 265 in 181.mcf
The instructions in this loop are responsible for around 25% of the dynamic instructions in the

trace intervals we simulated. Columns 1, 2, and 3 represent loop peeling factors for loop 265 with
the inner hammock 262 speculated.
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Figure 4.11 Loop peeling factors for loop 275 in 181.mcf
The instructions in this loop are responsible for around 4.3% of the dynamic instructions in the

trace intervals we simulated.
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Figure 4.12 Loop peeling factors for loop 1036 in 300.twolf
The instructions in this loop are responsible for around 1.6% of the dynamic instructions in the

trace intervals we simulated. The trip count for this loop never exceeds sixteen.
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Figure 4.13 Loop peeling factors for loop 1038 in 300.twolf
The instructions in this loop are responsible for around 2.3% of the dynamic instructions in the

trace intervals we simulated. The trip count for this loop never exceeds sixteen.
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Figure 4.14 Loop peeling factors for loop 1040 in 300.twolf
The instructions in this loop are responsible for around 4.2% of the dynamic instructions in the

trace intervals we simulated. The trip count for this loop never exceeds sixteen.
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4.5 Conjunctive Branch Evaluation

Figure 4.15 contains a source listing of 181.mcf’s function bea is dual infeasible. Figure 4.16 shows

the control flow graph of this function contains two conjunctive branch pairs. Each branch in these

pairs is mispredicted with a rate that approximately equals the branch bias. This function provides

a good example of how combining conjunctive branches can improve overall bias and predictability

in hard-to-predict branches.

int bea_is_dual_infeasible( arc_t *arc, cost_t red_cost )
{

return( (red_cost < 0 && arc->ident == AT_LOWER)
|| (red_cost > 0 && arc->ident == AT_UPPER) );

}

Figure 4.15 Source listing of function bea is dual infeasible in 181.mcf

Because branches W , X, Y , and Z in Figure 4.16 are mispredicted with roughly the same

frequency as the branch biases, we can apply the conjunctive branch bias heuristic from Section

3.11. Merging branches W and X results in a slight improvement in bias, while merging branches

Y and Z results in a significant improvement due to the heavy fall-out bias of branch Z. Combining

all four branches offers no improvement in bias over the merged pairs, because the Y Z and WX

fall-out edge weights do not exceed half of the influx value.

According to our selection heuristic, the savings in misspeculated cycles due to branch combining

exceeds the instruction fetching and execution overhead for combined branch Y Z, but not for the

other combinations. Figure 4.17 confirms that combining branches Y and Z offers a 1% to 2%

reduction in cycle and energy cost, while the other combinations do not improve in these areas.
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Figure 4.16 Improving branch bias by combining branches
Combining branches Y and Z provides the most significant improvement in net bias.

WX YZ WXYZ

Branches coalesced for third interval 

97.0

98.0

99.0

100.0

101.0

102.0

P
er

ce
nt

 o
f B

as
el

in
e

WX YZ WXYZ

Branches coalesced for second interval 

97.0

98.0

99.0

100.0

101.0

102.0

P
er

ce
nt

 o
f B

as
el

in
e

WX YZ WXYZ

Branches coalesced for first interval 

97.0

98.0

99.0

100.0

101.0

102.0

P
er

ce
nt

 o
f B

as
el

in
e

Cycles
Path Length
Energy
Insts fetched/committed

Figure 4.17 Conjunctive branch evaluation
The instructions in this loop are responsible for around 7.6% of the dynamic instructions in the

trace intervals we simulated.
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CHAPTER 5

Conclusion

In this thesis, we have shown predicated execution can be used to reduce the rising relative cost

of branch misspeculations in out-of-order processors. We developed a classification of control flow

structures and quantified each structure’s contribution to the overall number of branch mispre-

dictions in the Spec2000 integer benchmarks. We investigated how predicated execution can be

utilized to reduce the misprediction cost presented by these branches.

We developed heuristics for profile-directed if-conversion in a dynamically scheduled processor

with conditional move instructions. These heuristics model two inefficiencies of predicated execu-

tion: the wasted cycles spent fetching wrong-path instructions, and the added latency to produce

a predicated liveout value. We implemented an offline feedback-directed optimization system using

LLVM to analyze and optimize the benchmark code, and we executed the code on an out-of-order

microprocessor simulator.

We evaluated the results to characterize the performance and energy advantages of predicated

execution. We verified our hammock selection heuristics were effective in identifying profitable

hammocks to if-convert. When extending our heuristic to consider nested hammocks, we showed

it is important to consider the effects of static code scheduling and misprediction migration in

determining which branches to if-convert. For loop peeling, we found constant propagation and

dead code elimination often make the loop peels more efficient than the original loop body. We

showed that when prediction accuracy correlates to branch bias in a conjunctive pair, it can be

profitable to coalesce the branches for a net improvement in bias and predictability.

There are many questions left to be answered related to deploying predication for better per-
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formance and lower energy in superscalar microprocessors.

It would be interesting to show predication is an effective tool for a broad range of workloads,

including those with a higher frequency of L2 cache misses. These are the programs that will

be most impacted by the MLP capacity of future large-window machines. Indeed, it is important

future work to extend this study to learn how mispredicting branches in other benchmarks compare

to those in the Spec2000 integer benchmarks. Do other benchmarks have a similar distribution of

mispredicting branches? Are there new, important branch structures that were overlooked in this

study, and if so, can they be predicated? Do other benchmarks display as extreme a distribution

property as the Spec2000 integer benchmarks, where often fewer than 10% of the static branch

instructions account for over 99% of the overall mispredictions?

Also, how do our if-conversion heuristics fare with other benchmarks? Are loop peeling factors

frequently underestimated due to constant propagation? To what extent does predication aid

static code scheduling for an out-of-order processor? Is condition merging for nested hammocks

an effective way to limit misprediction migration? Does predication erase the positive prefetching

effect of misspeculations, and will this still be important as future large-window machines become

more tolerant of memory latency [11]?

We have shown predicated execution can deliver modest performance and energy gains on

modern dynamically scheduled microprocessors, and we believe it will grow in importance as branch

misspeculation becomes a more significant barrier to performance in future machines.
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