Probabilistic Counter Updates for Predictor Hysteresis and Stratification

Nicholas Riley

Craig Zilles

Department of Computer Science
University of Illinois at Urbana-Champaign
{njriley, zilles } @uiuc.edu

Abstract

Hardware counters are a fundamental building block
of modern high-performance processors. This paper ex-
plores two applications of probabilistic counter updates, in
which the output of a pseudo-random number generator de-
cides whether to perform a counter increment or decrement.
First, we discuss a probabilistic implementation of counter
hysteresis, whereby previously proposed branch confidence
and criticality predictors can be reduced in size by factors
of 2 and 3, respectively, with negligible impact on perfor-
mance. Second, we build a frequency stratifier by making
increment and decrement probabilities functions of the cur-
rent counter value. The stratifier enables a 4-bit counter to
classify an instruction’s Likelihood of Criticality with suffi-
cient accuracy to closely approximate the performance of
an unbounded precision classifier. Because probabilistic
updates are both simple and effective, we believe these ideas
hold great promise for immediate use by industry, perhaps
enabling the use of structures such as branch confidence
predictors which may have previously been viewed as too
expensive given their functionality.

1. Introduction

Hardware counters are a fundamental component of
modern high-performance processors. As many techniques
for improving single-thread performance—especially in
non-numeric programs—exploit repetition in program be-
havior, they require the means to characterize this behavior.
Processors employ hardware counters to perform efficient
on-line aggregation of multiple observations and identify
dominant behavior in recent execution.

In most designs, counters are deterministically up-
dated, e.g., every observed positive feedback event trig-
gers a counter value increment. We explore only perform-
ing counter updates in response to a subset of observa-
tions. Specifically, we propose inserting a simple pseudo-
random number generator—a linear feedback shift register
(LFSR)—whose output determines if a given observation

should result in a counter update. LFSRs and the design
of hardware counters with probabilistic updates are further
discussed in Section 2.

We identify two applications of probabilistic updates.
First, we show how probabilistic updates provide proba-
bilistic hysteresis. As we discuss in Section 2, a number
of proposed hardware counters use many bits per counter
for hysteresis. By substituting probabilistic hysteresis, we
can often significantly reduce counter sizes with little effect
on predictor behavior. We demonstrate this application in
two previously studied contexts: Section 3 introduces a 2-
bit branch confidence predictor that performs similarly to a
previously proposed 4-bit predictor, and Section 4 describes
a 2-bit criticality predictor that performs similarly to a pre-
viously proposed 6-bit one.

Second, probabilistic updates can stratify instructions
into different classes according to the frequency with which
they exhibit a particular behavior. Not only can we make a
binary prediction of whether an instruction will be critical,
but we can classify an instruction based on its likelihood of
being critical, allowing us to treat always-critical instruc-
tions differently than sometimes-critical instructions. The
key enabler for instruction stratification is the use of differ-
ent update probabilities at different counter values. Lower
counter values are associated with a much higher proba-
bility of incrementing on positive feedback and a much
lower probability of decrementing on negative feedback.
We thereby select an operating point (ratio of positive to
negative feedback) for each counter value; instructions tend
to hover around the counter values that most closely approx-
imate their operating point. In Section 5, we motivate the
utility of such a stratification and demonstrate how a 4-bit
counter can stratify an instruction’s Likelihood of Criticality
with performance comparable to an approach employing an
unbounded-precision likelihood representation.

We conclude by discussing the limits of probabilistic up-
dates. It appears at least one bit of real hysteresis, in ad-
dition to the bit(s) encoding the information being stored,
is required to closely approximate a multi-bit predictor.
Branch confidence and criticality predictor behavior notice-

ably changes between 2-bit and 1-bit counters, though the
lost accuracy is not commensurate with the 50% storage re-
duction. Regardless, this limits the benefit of probabilistic
updates applied to 2-bit counters, especially in aggressive
branch predictors that have been scaled well past the point
of linear reduction of misprediction rate with increased ta-
ble size.

2. Hardware counter design

This section presents the organization of a hardware
counter with probabilistic updates. We start by reviewing
the design of traditional hardware counters and explain-
ing why multi-bit counters can be useful. In Section 2.2,
we introduce a notation for describing counters and how
probabilistically-updating counters can approximate deter-
ministic counters while requiring fewer bits of storage. Sec-
tion 2.3 details the components of our probabilistically-
updated hardware counter design.

2.1. Traditional hardware counters

Predictors of instruction behavior employ arrays of hard-
ware counters because, while multiple executions of the
same static instruction are generally similar, we want to in-
dependently track the behavior of different static instruc-
tions. To select a counter from an array, a hash function
is applied to the instruction’s address, perhaps including
some historical information. A counter is updated by in-
crementing (decrementing) on positive (negative) feedback,
and predictions are made by comparing the current counter
value against a threshold. For example, each counter in
Smith’s 2-bit branch predictor [17] increments when a cor-
responding branch is resolved as taken and decrements
when not taken; a branch is predicted as taken when the
counter value exceeds a threshold of 1. Counter updates use
saturating arithmetic to prevent values from wrapping.

While a branch predictor outputs a single bit of informa-
tion (taken or not taken), 2-bit counters are used to provide
hysteresis. One bit of hysteresis is generally sufficient for
branch prediction, because it prevents a second mispredic-
tion when a branch occasionally executes against its bias
direction—including the important case of a loop exit.

Some more complicated predictors can benefit from
larger counters. Consider predictors used to decide whether
to speculate, such as one proposed to control selective value
prediction [3]. Unlike branch predictors, these predictors
have inherently asymmetric misprediction penalties: the
performance lost by speculating with an incorrect value (of-
ten incurring a pipeline flush) is significantly greater than
the opportunity cost of not speculating if the suggested pre-
diction would have been correct. This imbalance moti-
vates a biased counter design, which conservatively prefers
a cheaper false negative to a more expensive false positive.

Two attributes typify existing biased counter designs.
First, the magnitudes of counter increment (/) and decre-
ment (D) differ in order to adjust the minimum ratio of pos-
itive to negative (or negative to positive) feedback that sat-
urates a counter in one direction. For an unbiased counter,
this ratio is 50%. But by setting / = 1 and D = 2, we
can require positive feedback at a rate above 66% (%) for
the counter to saturate at its maximum value. Second, addi-
tional bits per counter store more history, enabling a moving
average to be computed with a larger window. In this way,
occasional feedback in the minority direction can be filtered
out. Both of these attributes can be observed in the previ-
ously mentioned selective value prediction counter, which
uses 4 bits of storage, / = 1 and D = 7.

2.2. Notation and probabilistic updates

We represent counters by 4-tuples, {n, I, D, T). An n-bit
saturating counter’s value increments by / on a positive out-
come, decrements by D on a negative outcome, and predicts
true if greater than the threshold value T, where possible
values range from O to 2" — 1. Table 1 presents several pre-
viously proposed counters in this notation.

Table 1. Some proposed multi-bit hardware counters.
Predictor

Smith’s 2-bit branch [17]

Calder et al.’s biased 4-bit value confi-
dence; low, medium and high confidence
thresholds T, respectively [3]

Counter
2,1,1,1)
4,1,7,{2,6,14})

Jacobsen et al.’s 4-bit resetting branch (4, 1,15, T)
confidence estimator [7]

Fields et al.’s biased 6-bit criticality [4] (6,8, 1,8)
Torres et al.’s Non-Forwarding Store [18] (3,1, 1, 6)

Deterministic updates constrain the elements of the 4-
tuple to integral values. With probabilistic updates, we can
set fractional values for / and/or D. For example, D = %
gives the counter a 25% chance of being decremented on
negative feedback. We can proportionally scale down a pre-
dictor by reducing its size by one bit and halving I, D and T
(e.g., (4, 1,15, 14) > (3, % 7,6) - (2, %, 3,2)). In Sections 3
and 4, we show that this proportional scaling can be applied
with little impact on predictor behavior.

2.3. Designing with probabilistic counter updates

Multi-bit counters are updated in a read-modify-write se-
quence. In traditional, deterministic counters, the current
value of the counter is read, incremented by I or decre-
mented by D (using saturating arithmetic) depending on the
type of event, and written back to the counter, as depicted in
Fig. 1(a). To implement probabilistic updates, e.g., a 25%
chance of decrementing on negative feedback denoted by

execution
a b
@ feedback (b)
prediction

counter value

read counter

execution
feedback

3b PRNG
0
>=

prediction

true/false

counter value

read counter

Figure 1. The update path for deterministic and probabilistic multi-bit counters with the same increment and decre-
ment ratio. The deterministic counter (a) increments by eight and decrements by one; the probabilistic counter (b) incre-
ments by one and uses a 3-bit value read from a PRNG to decrement by one 12.5% of the time.

D = }1, we introduce randomness into the counter update
sequence.

Fig. 1(b) illustrates a probabilistic counter update mech-
anism. For fractional values of I and D, the counter write is
conditional. If the value read from a pseudo-random num-
ber generator (PRNG) exceeds a threshold value—if 7 and
D differ and are both fractional, two separate threshold val-
ues are required—the counter is updated. Note that there is
a single PRNG for the whole array, not one for each counter.
While not shown in the figure, it may be possible to gate the
entire read-modify-write process, saving power by reducing
the frequency of counter reads and writes.

Our probabilistic counters require a source of pseudo-
random numbers, but it does not have to be a particularly
good one. Some applications may obtain a 12.5% proba-
bility by simply using a counter to select every eighth up-
date. Using a PRNG with such a short period increases the
likelihood of matching periodicity in the instruction stream,
potentially always updating some instructions and never up-
dating others. As a result, we believe a linear feedback shift
register, whose period scales logarithmically with its size,
represents a good cost-benefit tradeoff.

A linear feedback shift register (LFSR) [5] is a sequen-
tial shift register with logic that causes it to cycle through
a pseudo-random sequence of values. The feedback in a
LFSR is generated by the output of a set of its stages, called
taps, which are XORed into a value shifted into the regis-
ter. When optimally configured, an n-bit LFSR sequences
through every bit pattern except all zeros, yielding a period
of 2" —1. To achieve this maximal period, an LFSR needs an
even number of taps; the oldest bit is always tapped. An 8-
bit LFSR with taps in a configuration with maximal period
is shown in Fig. 2. If the LFSR exceeds the size of the re-
quired random number (e.g., only a 3-bit number is needed
in Fig. 1), any subset of the LFSR’s bits can be used.

While LFSR behavior is extremely predictable, it is ad-
equate for our purposes. A 32-bit Mersenne Twister-based
PRNG [11] produced results that did not differ substantially
from those obtained with a 16-bit LFSR. Given this result,

we did not explore more sophisticated PRNG hardware.

3. Branch confidence

Our first set of experiments explores probabilistic vari-
ants of branch confidence estimators. These predictors clas-
sify a fetched branch as high confidence if it is likely to be
correctly predicted, or low confidence otherwise. Applica-
tions of branch confidence predictors include pipeline gat-
ing [9]—trying to save power by reducing the number of
wrong-path instructions fetched—and selecting low confi-
dence branches at which to checkpoint processor state in
large-window processors [1].

Branch confidence estimators exploit a key observation
about branch predictor behavior: a branch which has been
consistently predicted correctly is likely to continue to be
predicted correctly. In light of this observation, Jacobsen
et al. proposed a predictor—subsequently referred to as the
JRS estimator—that tracks the number of correct branch
predictions since the last misprediction [7]. The estimator’s
saturating counters increment on every correct prediction
and reset on a branch misprediction; a 4-bit version is rep-
resented in our notation as (4, 1, 15, T'). In practice, the JRS
estimator works quite well, isolating almost 90% of the mis-
predictions to just 25% of the dynamic branches.

An important consideration in the design of a branch
confidence estimator is the tradeoff between accuracy and
coverage. Increasing the high-confidence threshold (the
number of correct predictions that must be observed before
a branch is considered predictable) increases the fraction of
high-confidence branches predicted correctly, but reduces
the number of correctly-predicted branches labeled as high

Figure 2. An 8-bit LFSR. Bits 2, 4, 5 and 7 are tapped.

—
D
~

1007 = Deterministic JRS (41,15,
-o-Probabilistic JRS (3,1
——Probabilistic JRS (2,1

% Mispredictions

% Dynamic Branches

—
(=)
-

10077 =Deterministic JRS (4,1,15,7)
-o-Probabilistic JRS (3,2/5,7,T)
~Probabilistic JRS (2.1/6.3.T)

% Mispredictions

% Dynamic Branches

Figure 3. Proportionally scaled probabilistic branch confidence counters have similar behavior to deterministic
versions; non-proportionally scaled predictors can match their behavior. Points correspond to different values of T.

confidence. With deterministic updates, increasing T re-
quires larger counters to store a larger number of correct
predictions since the last misprediction. For example, the
2-bit determinstic JRS estimator (2, 1, 3, 2) is only able to
isolate about 60% of the branch mispredictions in the low
confidence set.

Probabilistic updates allow us to decouple T from the
amount of storage allocated. We can approximate a branch
confidence estimator that requires 15 correct predictions by
ignoring half the correct predictions and requiring only 7
correct predictions. Results of applying this strategy are
shown in Fig. 3, analagous to Jacobsen’s Fig. 8 [7].

Here, we implemented branch confidence estimators for
a gshare branch predictor with 16 bits of global history in a
SimpleScalar-based functional simulator [2]. The simulated
execution includes the first 4 billion instructions of each of
the SPEC CINT2000 benchmarks. After each branch exe-
cution, we record the branch predictor correctness with the
corresponding counter value for each estimator. From this
information, we reconstruct the number of correct and in-
correct high and low confidence predictions at each possible
threshold 7'.

Fig. 3(a) includes linearly scaled 3-bit and 2-bit proba-
bilistic counter variants of the 4-bit JRS estimator. While
these variants closely track the deterministic estimator, the
rightmost point falls somewhat short of the 4-bit version.
This stems from two effects: we are forced to scale the
threshold superlinearly (% = 7 but the highest threshold for
a 3-bit counter is 6), and some imprecision is introduced by
the probabilistic updates (i.e., with I = %, a branch would
need an average of 14 correct predictions, but could saturate
with as few as 7). Nevertheless, nonlinearly scaled proba-
bilistic counters can closely approximate the 4-bit predic-
tor, as shown in Fig. 3(b). The nondeterministic versions
require roughly 0.25% more dynamic branches to reach the
same level of misprediction coverage.

We can also observe the behavior of probabilistic coun-
ters using the metrics introduced by Grunwald et al. [6]:
sensitivity (SENS), the fraction of correct predictions iden-
tified as high confidence; predictive value of a positive test
(Pvp), the probability a high confidence estimate is correct;
specificity (SPEC), the fraction of incorrect predictions iden-

tified as low confidence; and predictive value of a negative
test (PvN), the probability a low confidence estimate is cor-
rect.

Different applications seek to optimize different metrics:
consumers of branch confidence data use either Pvp or PVN,
and place varying importance on SENS and SPEC. Grunwald
identifies PvN and SPEC as critical for pipeline gating, to
avoid stalling the processor unnecessarily while maximiz-
ing power-saving opportunities. In contrast, selection of
branches for checkpointing benefits from optimizing Pvp
and SENS, to minimize the likelihood that a misprediction
happens at a non-checkpointed branch and to avoid running
out of checkpoints (which would occur if we predicted too
many branches as low confidence).

In Fig. 4(a), we plot PvPp versus SENS for a range of pre-
dictors. We now use Grunwald et al.’s enhanced JRS esti-
mator, which improves accuracy by appending the currently
predicted branch outcome to the branch history used to in-
dex into the counter array. A point in the upper right-hand
corner of this graph would correspond to an ideal predictor.
Lines connect predictors of the same size, demonstrating a
tradeoff between Pvp and SENS. Probabilistic updates en-
able this tradeoff independent of predictor size. Only the
topmost point on each line represents a deterministic pre-
dictor; the others represent predictors with probabilistic in-
crements. A deterministic predictor with half the number of
entries is shown for reference; it uses the same amount of
space as the 2-bit predictors.

The “iso-size” curves in the figure shift slightly to the
right (increased PvP) as the counter size increases from 1
to 4 bits. This trend enables estimators with 2- and 3-bit
probabilistic counters to perform almost as well as the 4-bit
(deterministic) predictor. Specifically, 2- and 3-bit counters
with the same SENS as the 4-bit counter respectively exhibit
only 0.08% and 0.02% reduction in Pvp. The probabilis-
tic 2-bit predictor significantly outperforms an equivalently-
sized 4-bit deterministic predictor with half as many coun-
ters. There is a significant performance gap between the
1-bit and 2-bit counters, though both outperform determin-
istic counter arrays using an equivalent or lesser amount of
storage.

Fig. 4(b) plots PvN versus SPEC, demonstrating the

@ - (b)

100
9541

o f N
SO S R EOS N i bit

% SENS
% SPEC

70

30

oDeterministic enhanced JRS (/= 1) 4096 entries
__ |eProbabilistic enhanced JRS (/ = 1/2) 4096 entries
sProbabilistic enhanced JRS (/= 1/4) 4096 entries
_ |xProbabilistic enhanced JRS (/= 1/8) 4096 entries
oProbabilistic enhanced JRS (/= 1/16) 4096 entries
_ |=Deterministic enhanced JRS (/= 1) 2048 entries

% PVP

I I I I I I 1
96.5 97.0 975 98.0 985 99.0 99.5 100.0 15 20

U
25 30 35
% PVN

Figure 4. Probabilistic updates endow smaller predictors with performance equivalent to that of larger determinis-
tic predictors and decouples threshold from size. Curves connect predictors using approximately the same area.

tradeoffs important to a class of applications including pipe-
line gating. Predictor behavior is similar to the Pvp versus
SENS data, with the relative positions of the various counter
sizes reversed.

4. Critical path prediction

Our second set of experiments was performed in the con-
text of Fields et al’s critical path predictor [4]. In this
model, a token-passing criticality analyzer updates biased
6-bit counters. The binary (critical, non-critical) output
of the predictor directs optimizations. Because a relatively
small number of instructions are indeed critical, predicting
a few non-critical instructions as critical does not greatly af-
fect performance, but missed critical instructions represent
a significant loss of optimization opportunity. The counters
are therefore biased to predict an instruction as critical if it
has recently been measured as critical at least % of the time.

Optimizing a predicted critical instruction might make
it non-critical in the optimized dynamic instance. Never-
theless, it is desirable to continue predicting the instruction
as critical, because if it is not optimized, it will remain truly
critical, and the optimization can expose a secondary critical
path which can also be optimized. As a result, Fields’s criti-
cality predictor is designed with a significant amount of hys-
teresis to ensure these instructions continue to be predicted
critical. We experimented with reducing the size and/or bias
of these deterministically updated counters and observed re-
ductions in prediction accuracy that justify Fields’s selec-
tion of counter parameters. For comparison, we include the
best deterministic 3-bit predictor we found, (3, 4, 1, 4).

The following experiments evaluate 3-, 2- and 1-bit
probabilistic counters which represent linear scalings of
Fields’s 6-bit deterministic counter: (3, 1, 3, 1), (2, 1, &, 0),
and (1, %, % 0)!. Fractional values of T were rounded
down to 0, as this provided better performance. The 1-
bit probabilistic counter is not suggested as a practical

As part of this work, we explored a variety of counter parameters.
Among them, we found a 2-bit configuration (2, 1, %, 0) whose average
performance slightly exceeds that of the baseline 6-bit predictor.

alternative—its behavior exhibits the graceful degradation
of our method.

We describe two sets of experiments performed using
critical path predictors. The first demonstrates that our
proposed probabilistically-updating counter designs have
the same qualitative behavior as deterministically updated
counters that are two to three times larger. The second
demonstrates that this behavior translates into equivalent
performance for criticality-based scheduling in a clustered
microarchitecture.

Experimental method: To perform experiments similar to
those of Fields er al., we simulated an 8-wide dynamically-
scheduled superscalar processor with a 128-entry instruc-
tion window, 13-stage pipeline, and a gshare branch predic-
tor using 16 bits of global history. We assume a perfect in-
struction cache, a 32 KB, 4-way L1 data cache with 2-cycle
access latency, a 1 MB, 8-way L2 data cache with 10-cycle
access latency, and memory with a 100-cycle latency and 4-
cycle interconnect occupancy for 32-byte blocks. Simulated
16-bit LFSRs are initialized at the start of each experiment;
one shift occurs per value read from the register, not per
CPU cycle.

The SPEC CINT2000 benchmarks were compiled using
the Digital Alpha compiler with full traditional optimization
(no profile feedback). Speedups are calculated by averaging
three 10 million instruction runs of the benchmarks after
skipping 3, 5, and 8 billion instructions, after warming up
predictors and caches for one million instructions.

4.1. Predictor behavior

To evaluate the behavior of alternative counter designs
in isolation, we examined simulation-generated traces of
Fields’s model-based criticality results grouped by static in-
struction. We demonstrate the prediction accuracy of proba-
bilistic counters in the context of an alias-free predictor with
immediate updates—a best-case scenario for the predictors.

The accuracy of each predictor is plotted in Fig. 5. As
accurate identification of critical instructions is the greater
performance contributor, the reader should focus on the bot-
tom and top segments of each column, labeled “correctly

R0l 7 — e
90% u H L A L R M L
80% HH H B
70% H
60%
50%
40%
30%
20% T H

Dynamic Instructions

10% HHH |

0% = =

H M m 6-bit deterministic (6,8,1,8) [Fields]
H K H 3-bit probabilistic (3,1,1/8,1)

2-bit probabilistic (2,1/2,1/16,0)
1-bit probabilistic (1,1/4,1/32,0)
3-bit deterministic (3,4,1,4)

® incorrectly predicted non-critical
O incorrectly predicted critical

@ correctly predicted non-critical
O correctly predicted critical

bzip2 crafty eon gap gce gzip mcf parser

perl

twolf vortex vpr average

Figure 5. The behavior of probabilistic predictors qualitiatively resembles that of larger deterministic ones. Predic-
tions from Fields’s deterministic, three LFSR-based probabilistic, and a 3-bit deterministic counter trained on model-based
criticality results, one static instruction at a time, using traces of 19 million dynamic instruction executions per benchmark.

60 1 | —Deterministic (6,8,1,8) [Fields]
--Probabilistic (3,1,1/8,
2, 1

1)
--Probabilistic (. /16,0)

172,

Counter Value
w
o
Il

0 /\l T
0 100
Dynamic Instructions

Figure 6. Fields’s deterministic and two approximat-
ing probabilistic counters, predicting model-based
criticality of a single static instruction over a par-
tial execution of crafty. The dashed line indicates the
threshold of Fields’s counter; probabilistic counter values
are scaled such that their thresholds coincide.

predicted critical” and “incorrectly predicted non-critical”.
There is no visibly discernible difference among the 6-bit
deterministic, 3-bit and 2-bit probabilistic predictor results
for these segments. The 1-bit predictor is noticeably less
accurate, though its behavior is quite similar.

All the predictors can trivially classify instructions
which exhibit consistent behavior over the duration of pro-
gram execution—those which are always critical or never
critical. More interesting cases, where instructions are oc-
casionally critical or go through phases of criticality, distin-
guish the predictors’ performance.

Fig. 6 illustrates probabilistic counters approximating
Fields’s deterministic counter design in such a case. The
scales of the counters have been normalized to that of the
baseline counter, from 0 to 63 (2° — 1). Plateaus indicate
periods when criticality feedback is being ignored by prob-
abilistic counters.

As the 3-bit counter is deterministically incremented, its
upward movements match those of the 6-bit counter. It
has proportionally fewer intermediate steps than the 6-bit
counter and so must periodically—one-eighth of the time—

make correspondingly larger jumps downward.

To demonstrate differing probabilistic and deterministic
counter behavior, the trace in Fig. 6 was selected such that
the 2-bit counter—which, unlike the 3-bit counter, has a
fractional value for /—experiences bad luck. It effectively
receives “tails” on flips of five coins in a row, completely
missing the initial critical behavior of the instruction. These
occurrences are rare, as demonstrated by Fig. 5, but lead to
a slight reduction in accuracy relative to the 6-bit predictor.

4.2. Performance

We measure the performance impact of using a reduced-
size probabilistic counter on Fields’s applications of
criticality-based scheduling in clustered architectures. Our
baseline machine includes eight 1-wide clusters, each with
16-entry instruction windows, and uses a dependence-based
steering policy. The criticality predictors employ 16K-entry
tables trained using Fields’s criticality model.

Fig. 7 plots speedups over executions without critical
scheduling. Consistent with the idealized predictor accu-
racy, performance degrades slowly with reduced predictor
storage. On average, the 2- and 3-bit counters achieve
speedups only slightly smaller than the 6-bit counter: 7.75%
and 7.91% compared to 7.94%. For some benchmarks, the
probabilistic counter “gets lucky” and outperforms the 6-bit
deterministic predictor: see bzip2, gzip and twolf. Even the
1-bit counter is competitive in several benchmarks, achiev-
ing 6.4% speedup on average. Notably, the 1-bit probabilis-
tic predictor outperformed the deterministic 3-bit predictor,
which achieved an average speedup of 5.1%.

Alternatively, keeping the predictor size constant, non-
determinism can be used to increase performance. For any
predictor size, a probabilistic predictor exists which outper-
forms Fields’s 6-bit deterministic one (Fig. 8). The best
probabilistic counter varies with size: the 2-bit predictor
performs better at smaller sizes where conflicts from alias-
ing are more significant than the loss in resolution.

H 6-bit deterministic (6,8,1,8) [Fields]

[3-bit probabilistic (3,1,1/8,1)

2-bit probabilistic (2,1/2,1/16,0)
1-bi
3-b

1.16

1.14+

[1-bit probabilistic (1,1/4,1/32,0)

112 [3-bit deterministic (3,4,1,4)

. I |/ |
L LI T | 7 e | |
o
8
2 1,08
7]

1.06

1.04+
1.02

0 5SS
e

ANy

1.00- =
mcf par per two vor vpr ave

o
N
Q
o
@
<]
>
Q
o
°
Q
2]
Q
N

Figure 7. The performance achieved by 3- and 2-bit
probabilistic predictors closely approximates that of
a 6-bit deterministic predictor. Speedups over a clus-
tered microarchitecture without critical scheduling, using
predictions from model-based criticality results.

-o-6-bit deterministic (6,8,1,8)
1.08| -o-3-bit probabilistic (3,1,1/8,1
~~2-bit probabilistic (2,1/2,1/16,0) |.-
*-1-bit probabilistic (1,1/4,1/32,0)

1.06 T T T T T

Predictor State (KB)

Figure 8. Probabilistic predictors outperform deter-
ministic ones of the same size. Probabilistic predictors
are less sensitive to size. The 3-bit deterministic predictor
(not shown) always offers less than 6% speedup.

5. A Likelihood of Criticality tracker

The previous section demonstrated how probabilistic up-
dates can increase the storage efficiency of a binary pre-
dictor whose outputs are (critical, non-critical). We now
show that it can be useful to go beyond a binary notion of
criticality to a Likelihood of Criticality (described in Sec-
tion 5.1). We demonstrate a counter design in Section 5.2
that can stratify instructions into groups based on the fre-
quency at which they are critical. This design includes
probabilistic updates where the probabilities of increment-
ing and decrementing depend on the current counter state.
As few as four bits of storage can thereby be used to predict
Likelihood of Criticality almost as well as a predictor with
unbounded precision (Section 5.3). While demonstrated
in the context of criticality, the proposed counter design is
equally applicable for tracking other program behaviors.

5.1. Likelihood of Criticality

Previous work [15] has shown, when giving preferential
scheduling priority to critical instructions, it can be desir-
able to have more than a binary notion of criticality. With
multiple levels of criticality, we can distinguish between
two predicted critical instructions, and two predicted non-
critical instructions. A motivating example is the fragment

®——mispredicting branch from: get_heap_head()

Figure 9. A code example demonstrating the source
of contention-related stalls. The critical path, ending in
a mispredicted branch (BR*), is highlighted. Both instruc-
tions a (on the rib) and b (on the spine) are predicted crit-
ical, but instructions on the spine are more often critical.

from the benchmark vpr shown in Fig. 9, which exhibits
a “spine and ribs” structure commonplace in programs. In
this loop, the dominant spine (including instruction b) com-
putes a loop-carried dependence used by ribs which period-
ically diverge from the spine and do not reconverge.

The rib that starts with instruction a includes a hard-to-
predict branch. As a result, both the static instructions la-
beled a and b are frequently predicted as critical: they are
regularly on the critical backward slice of the mispredicted
branch. If we need to make a choice between these instruc-
tions, as we have to do on a clustered microarchitecture with
single-issue clusters—where only one of the two instruc-
tions can issue immediately after their predecessor, and the
other has to be steered away or stalled—binary predictions
of criticality are insufficient.

If we choose to break ties by preferring the older instruc-
tion, in this case instruction a, we make the wrong choice
for every iteration but the last, because only in the last itera-
tion is a critical. If we instead predict how likely an instruc-
tion is to be critical—b is much more likely to be critical
than a—and prioritize instructions based on their likelihood
to be critical, we can achieve a better schedule than with
a prediction of critical/not-critical. In practice, an instruc-
tion’s Likelihood of Criticality (LoC) is well predicted by
the fraction of occurrences—a real number between 0 and
1—that an instruction has been critical in the past.

While each instance where LoC improves performance
only saves a few cycles, such instances are common enough
to significantly impact overall performance. In the 8-wide
single-issue clustered machine described in Section 4, a
LoC-based scheduler offers a 5% speedup over binary criti-
cality scheduling, as shown in Fig. 10. These results include
an “unlimited precision” or “infinite” LoC tracker which
records the number of critical and non-critical instances of a
given instruction. When a prediction is needed, it computes
the fraction of critical instances and assigns the instruction

148 7| W 6-bit [Fields]
116+ 1 @ 6-bit multi-value
114 | A Infinite LoC
a1.12-
3
2 110+
2 1.08
1.06 -
1.04+
1.02+
1.00

7 A

bzi cra eon gap gcc gzi mcf par per two vor vpr ave

Figure 10. True Likelihood of Criticality (LoC) infor-
mation enables effective resource allocation.

one of eight priority levels for scheduling (rather than criti-
cality scheduling’s two [4]).

Empirically, we find little benefit in providing more than
eight priority levels. With eight levels, we can correctly pri-
oritize instructions unless they have very similar LoCs, in
which case the penalty of incorrectly prioritizing them—
which only happens half the time—is negligible. As a re-
sult, the results in the remainder of this section use eight
priority levels.

5.2. A LoC estimator

Clearly, tracking LoC by keeping a count of critical and
total instances is not feasible, as it requires too many bits
of state per instruction. In this section, we describe a fea-
sible approach to estimating LoC, but first demonstrate that
merely reinterpreting the existing counter states of Fields’s
predictor poorly approximates a true LoC tracker.

Fig. 10 shows that interpreting a Fields multi-bit criti-
cality predictor’s value to create a continuum of criticality,
encoding eight criticality levels in the top three bits, pro-
vides only a 1% average speedup over binary criticality.
This traditional predictor organization does not improve
performance much because it tends to saturate at the ends
of the spectrum. Fig. 11 shows a Fields predictor’s behav-
ior when fed random bit streams with a variable fraction of
1’s, from O to 100% on the x axis. For each stream, we
plot the fraction of time spent in each of the eight prior-
ity levels. While the Fields predictor is effective at distin-
guishing between instructions with LoC above and below
11%, as the predictor increments by 8 and decrements by 1
(g7 ~ 11%), it is really only able to distinguish whether an
instruction is above or below that threshold.

The key to distinguishing multiple thresholds throughout
the LoC continuum is a collection of increment and decre-
ment ratios, each of which distinguishes one stratum from
the next. We now describe how this can be implemented.
The first step is to associate each counter encoding with a
LoC. In demonstrating this idea, we consider a 3-bit counter
and initially distribute the encodings equally throughout the
range of LoCs (Table 2). More bits provide better resolu-

|7
@6
| 13
4
@3
W2
(R
WMo

% in Encoding

Likelihood of Criticality

Figure 11. Traditional saturating counters effectively
encode a binary threshold. The Fields predictor only
uses the intermediate encodings for LoCs in a small tran-
sition region around 11%.

tion. The goal is for our predictor to be in a state that closely
approximates the LoC of the instruction being tracked (i.e.,
an instruction that is critical 40% of the time should have a
counter value of 2 or 3 most of the time).

execution
6b PRNG
1 feed JaCk
ROM

prediction true/false

counter value

Figure 12. A probabilistic stratifier.

Counters track likelihoods by probabilistically incre-
menting (decrementing) on positive (negative) feedback
with different probabilities for each value. Fig. 12 depicts a
design where the current counter value indexes into a ROM,
retrieving a threshold applied to the PRNG output. LoCs
above the threshold are more likely to increment, and those
below it are more likely to decrement.

Using different probabilities at each state lets us partition
the range of likelihoods into multiple segments. Specifi-
cally, we decrease the probability of incrementing with in-
creasing counter values (and correspondingly increase the
probability of decrementing), as shown in Table 2, to create
the desired operating points. These probabilities will create
a tendency for an instruction to move toward an encoding
that matches its LoC.

Equation 1 shows how to compute the bias direction for
a given LoC at a particular counter value.

bias direction = LoC X (increment probability) — (1)
(1 — LoC) x (decrement probability)

The bias direction is positive when the LoC exceeds the
counter value’s operating point and negative otherwise.
Thus, instructions tend to find an equilibrium point, oscil-
lating between the operating points immediately above and
below the LoC. In our example, an instruction with an LoC
of 40% will tend to oscillate between counter values 2 and

Table 2. A 3-bit LoC tracker associates a different operating point with each encoding. Increment probabilities are
(100%—operating point); decrement probabilities match the corresponding operating points.

2 3 4 5 6 7

counter value 0 1
operating point 11% 22%
increment probability 89% 78%
decrement probability 0% 22%

33% 44% 55% 66% T7% 88%
67% 56% 45% 34% 23% 0%
3% 44% 55% 66% T1% 88%

% in Encoding

Likelihood of Criticality

Figure 13. The probabilistic stratifier more evenly distributes encodings. We again use randomly generated streams

with fractions of ones between 0 and 100%.

3, as shown by equations 2 and 3.

when counter = 2:

0.4 x0.67 - 0.6 x0.33 =0.268 — 0.198 = +0.07 (2)
when counter = 3:

0.4x0.56 - 0.6 x0.44 =0.224 — 0.264 = -0.04 (3)

Using this style of counters, we can more evenly distribute
encodings across the space of LoCs to construct a prob-
abilistic stratifier. Figure 13 shows how long each LoC
spends in each of the 3-bit counter encodings. Instructions
in the middle of the LoC range spend non-trivial amounts
of time in as many as six encodings. While we achieve the
correct encodings on average, the statistical nature of the
counters leads to some “jitter” in the value. The amount of
jitter does not scale with the size of the counter, but does
present a lower bound on the size of effective counters, as
we show below.

Despite the jitter, the counter values can effectively dis-
tinguish two instructions of different criticality. Fig. 14
shows the probability of correctly selecting the more critical
instruction as a function of the difference in criticality. For
a 6-bit counter, instructions that differ in criticality by 20%
can be distinguished almost 100% of the time, and even dif-
ferences of only 10% can be distinguished 90% of the time.
This is encouraging, as our previous experiments showed
that it was only necessary to distinguish 8 levels of LoC.

We can tailor our probabilistic stratifier to the LoC do-
main by considering the distribution of LoC values. In the
above examples, we distributed counter encodings evenly
throughout the LoC space. Observed instruction LoCs are
not evenly distributed, however: as shown in Fig. 15, more
than half of dynamic instructions correspond to static in-
structions that are on average critical less than one percent
of the time. We have found empirically that the best perfor-
mance is achieved by distributing encodings in proportion

1004 -_—
T ST T P

g 80 AT — &bt
£ 604 L7 ——— 5bit
8 40 —— — 4-bit
& 201 3-bit

0 T T T T T 1

0 10 20 30 40 50

Difference in Likelihood of Criticality

Figure 14. Likelihood trackers can consistently dis-
tinguish instructions with differing criticality.

53%

10 4}
T
ol
4
2
0

% Dynamic Inst.

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 55100
Average Likelihood of Criticality

Figure 15. Likelihoods of criticality are not equally

distributed. 53% of instructions are critical less than 1%;

almost 75% are critical less than 10% of the time.

to the distribution of LoCs, i.e., allocating more encodings
to lower criticality values®>. While it may seem counter-
intuitive to allocate many encodings to differentiate many
levels of “non-criticalness,” it is important to correctly pri-
oritize between rarely critical instructions because of the
overwhelming frequency with which such comparisons are
made.

5.3. Results

With this approach, we find that as small as a 4-bit
counter, mapped down to 8 priority levels, can closely ap-
proximate the performance of the unbounded precision LoC
tracker. In Fig. 16, we compare the performance of, from

2For example, our 4-bit counters use the following set points: 0, 0.002,
0.005, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.13, 0.16, 0.21, 0.29, 0.40, 0.50,
0.60. Thus the 0000 encoding is meant to encode instructions with LoC
between 0% and 0.2%.

bzip2 crafty eon gap gcce gzip mcf

-bit [Fields]
-bit multi-value

parser perl twolf vortex vpr average

Figure 16. A 4-bit Likelihood of Criticality (LoC) predictor approximates one of infinite size.

left to right in each group, Fields’s binary criticality predic-
tor (using 6-bit counters), a multi-level criticality predictor
implemented by using the top 3 bits of the Fields predictor,
a LoC tracker with unbounded precision, and LoC trackers
with 6, 5, 4, and 3 bits of precision.

The LoC trackers significantly outperform the traditional
saturating counter implementations. Four bits provide suffi-
cient precision; with fewer than four bits, there is a percepti-
ble loss of performance as the jitter becomes non-negligible
relative to the number of available encodings. Nevertheless,
this probabilistic scheme, like those shown in previous sec-
tions, degrades gracefully; the 3-bit version loses only 1%
of performance with respect to the ideal of unbounded pre-
cision.

Interestingly, in some benchmarks the probabilistic strat-
ifiers occasionally outperform the infinite precision one. We
do not believe this to be an important phenomenon, just
“dumb luck” where elided updates happen to yield better
predictions than the deteriministically updated version.

6. Related work

Probabilistic event counter updates and nonuniform up-
date probabilities were previously proposed by Morris [12].
Morris’s counter encoding was logarithmic, as opposed to
the linear and discrete encodings we use.

Loh et al. observe that 2-bit counters remain in the
strongly taken or strongly not taken states for 90% of the
predictions made by an 8K entry gshare branch predictor on
the SPEC CINT2000 benchmarks [8]. Instead of fractional
values for / and D, Loh et al. implement fractional values
for n by sharing a hysteresis bit among multiple counters.
Reductions in area of 25% or 37.5% can be achieved with
only 2.8% or 8.3% increase in mispredictions with a single
hysteresis bit shared among two or four counters, respec-
tively.

The Alpha EV8 branch predictor design [16] employed
four sets of separated prediction and hysteresis arrays. In
two of these hysteresis arrays, implementing the meta-
predictor and part of an e-gskew predictor, each hysteresis
bit is shared between two counters. A partial update strat-
egy, in which the hysteresis table is not written on every
prediction, somewhat alleviates the aliasing effects caused
by the shared hysteresis.

The Bandwidth Adaptive Snooping Hybrid (BASH)
cache coherence protocol [10] uses a saturating policy
counter (8, 1, 1, T'), where T is a randomly generated 8-bit
integer, to determine whether to unicast or broadcast based
on the bandwidth utilization. Pseudo-random numbers are
generated by an LFSR and compared to the policy counter
off the critical path, though the amount of logic required to
implement a LFSR (as shown earlier) is negligible. Region-
Scout [13] is an cache coherence optimization which uses
an array of LFSRs to record locally-cached regions.

A portion of this work appeared in [14].

7. Conclusion

We have demonstrated how probabilistic updates—
implemented by introducing a pseudo-random number gen-
erator into the counter update path—can reduce hard-
ware predictor sizes by providing probabilistic hysteresis.
Branch confidence and criticality predictors’ counters can
be reduced to 2 bits from 4 and 6 bits, respectively, with lit-
tle impact on performance. Probabilistic updates can also be
used to build probabilistic stratifiers: predictors that classify
an instruction based on the frequency a given behavior is ob-
served. A 4-bit stratifier can represent eight levels of Likeli-
hood of Criticality (LoC) with sufficient accuracy to achieve
performance closely approximating that of an unbounded-
precision mechanism.

While these results are significant, it is important to ob-
serve the limitations of probabilistic updates. Specifically, it
should be noted that all of the above cases required at least
one bit of “real” hysteresis provided by counter state to ap-
proximate the behavior of a larger counter. For branch con-
fidence and criticality, which make binary predictions, 2-bit
predictors were required; for LoC with 3-bit resolution, a
4-bit predictor was required. Below this point, with 1-bit
binary predictors and 3-bit LoC stratifiers, we observed a
more noticeable drop in performance. Some real hysteresis
appears necessary to smooth out the randomness-introduced
jitter. Demonstrating that one bit of hysteresis is both neces-
sary and sufficient for approximating any multi-bit counter
would be interesting future work.

More practically, this requirement for real hysteresis lim-
its the applicability of probabilistic updates. It appears that
probabilistic updates have little to offer counters of two or

)
| -o-Probabilistic gshare (1,1/2,1/2,0)
« ; ~Probabilistic gshare (1,1/4,1/4,0)

--Deterministic gshare (2,1,1,1

Branch Prediction Accuracy

[I l [
64 256 1024 4096 16384

Predictor State (bytes)

Figure 17. Probabilistic updates are not effective for
2-bit counter-based branch predictors.

fewer bits, including those used in most branch predictors.
We confirmed this intuition with experiments comparing
equal-resource gshare branch predictors using probabilis-
tically updated 1-bit counters with those using deterministi-
cally updated 2-bit counters, as shown in Fig. 17. With 1-bit
probabilistic counters, we can use twice as many with sim-
ilar hardware cost, but the benefit of using additional coun-
ters (and increasing the history length by one) always failed
to balance the penalty introduced by probabilistic updates.
This is especially true in large branch predictors where ad-
ditional history bits achieve diminishing returns.

Nevertheless, probabilistic updates can significantly re-
duce the cost—both in area and power—of other proposed
predictors. By reducing the barrier to entry, probabilis-
tic updates potentially enable inclusion of predictors whose
function could not otherwise be justified. In particular, 1-bit
probabilistic predictors present an interesting design point,
as they are even simpler than deterministic predictors: they
do not require a read-modify-write update sequence. Over-
all, we are optimistic that the simplicity and effectiveness
of probabilistic updates will lead to their inclusion in future
Microprocessors.

Acknowledgments

This research was supported in part by NSF CAREER
award CCR-03047260 and a gift from the Intel corporation.
We thank Pierre Salverda, Luis Ceze, Paul Sack, Naveen
Neelakantam and the anonymous reviewers for their feed-
back on this work.

References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
processing and recovery: Towards scalable large instruction
window processors. In Proc. 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2003.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer,
35(2):59-67, Feb. 2002.

B. Calder, G. Reinman, and D. M. Tullsen. Selective value
prediction. In Proc. 26th International Symposium on Com-
puter Architecture, pages 64—74, 1999.

B. A. Fields, S. Rubin, and R. Bodik. Focusing processor
policies via critical-path prediction. In Proc. 28th Interna-
tional Symposium on Computer Architecture, pages 74-85,
2001.

S. W. Golomb. Shift Register Sequences. Aegean Park Press,
Laguna Hills, CA, 2nd edition, 1982.

D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Con-
fidence estimation for speculation control. In Proc. 25th
International Symposium on Computer Architecture, pages
122-131, 1998.

E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning con-
fidence to conditional branch predictions. In Proc. 29th An-
nual International Symposium on Microarchitecture, pages
142-152, 1996.

G. H. Loh, D. S. Henry, and A. Krishnamurthy. Exploit-
ing bias in the hysteresis bit of 2-bit saturating counters in
branch predictors. The Journal of Instruction-Level Paral-
lelism, 5, June 2003.

S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. In Proc. 25th
International Symposium on Computer Architecture, pages
132-141, 1998.

M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood.
Bandwidth adaptive snooping. In Proc. 8th Annual Inter-
national Symposium on High-Performance Computer Archi-
tecture, pages 251-262, 2002.

M. Matsumoto and T. Nishimura. Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul.,
8(1):3-30, 1998.

R. Morris. Counting large numbers of events in small regis-
ters. Communications of the ACM, 21(10):840-842, 1978.
A. Moshovos. RegionScout: Exploiting coarse grain sharing
in snoop-based coherence. In Proc. 32nd International Sym-
posium on Computer Architecture, pages 234-245, 2005.
N. Riley and C. Zilles. Probabilistic counter updates for pre-
dictor hysteresis and bias. Computer Architecture Letters,
August 2005.

P. Salverda and C. Zilles. A criticality analysis of cluster-
ing in superscalar processors. In Proc. 38th Annual Interna-
tional Symposium on Microarchitecture, 2005.

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
tradeoffs for the Alpha EV8 conditional branch predictor. In
Proc. 29th Annual International Symposium on Computer
Architecture, pages 295-306, 2002.

J. E. Smith. A study of branch prediction strategies. In Proc.
8th Annual International Symposium on Computer Architec-
ture, pages 135-148, 1981.

E. F. Torres, P. Ibanez, V. Vinals, and J. M. Llaberia. Store
buffer design in first-level multibanked data caches. In Proc.
32nd Annual International Symposium on Computer Archi-
tecture, pages 469-480, 2005.

