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Abstract

The Master/Slave Speculative Parallelization paradigm relies on the use of a highly optimized
and mostly correct version of a sequential program, called distilled code, for breaking inter-task
dependences. We describe the design and implementation of an optimization framework that can
create such distilled code within the context of an MSSP simulator. Our optimizer processes pieces
of Alpha machine code called traces and is designed to optimize code while adhering to certain
restrictions and requirements imposed by the MSSP paradigm. We describe the specific places
where our optimizer is different from that in a compiler and explain how the optimized traces are
deployed in the simulator.
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Chapter 1

Introduction

The Master/Slave Speculative Parallelization [1] (MSSP) paradigm relies on the use of an approxi-
mate version of a sequential program, called the distilled program, to parallelize its execution. The
execution of a program is broken into several tasks and the distilled program acts, in essence, as a
value predictor for values live across task boundaries. Since the execution speed a program in MSSP
is determined by the speed of the distilled program, it is important to optimize the distilled code to
exploit the new opportunity created by MSSP: the distilled code can sacrifice some correctness in
favor of speed. This thesis describes the design and implementation of an optimization framework
for optimizing such distilled programs.

1.1 Motivation

In MSSP the execution of a sequential program is broken into several tasks and inter-task depen-
dences (values live across task boundaries, i.e., computed by one task and used by another task)
are dealt with by predicting them instead of waiting for the previous task to compute those value.
This prediction breaks the inter-task dependence and allows MSSP to execute the two tasks in
parallel. To deal with incorrect predictions, at the end of each task MSSP checks if the predicted-
liveins match the actual values of the liveins. If the check succeeds the task is committed else it
is squashed and restarted. If the prediction accuracy is high, the execution speed of the program
depends upon the speed at which predictions are computed. The novel feature of MSSP is that
instead of using a hardware predictor for generating task livein predictions, it uses a piece of code
to generate predictions. This piece of code is a simplified form of the sequential program under
execution and is called the distilled code. Since the distilled code is used only as a predictor,
it need not be correct. Hence MSSP can optimize it aggressively, eliminating computation that
does not affect task liveins, and simplifying it so that task liveins are correct most of the times,
but not always. Thus, MSSP can optimize the distilled code even when violating correctness in
some cases. Such extreme optimization is called approrimation or distillation and enables MSSP
to create high-speed and high-accuracy predictors that are tailored to the specific program under
execution. The MSSP paradigm is described in more details in [1].

Distillation can exploit many different forms of program behavior to create distilled code. One
general technique is to focus on the frequently executed sections of the code for distillation. While
a profile-guided compiler optimization also uses the same technique, it is constrained by the fact
that although it can slow down the computation along a cold path arbitrarily, it cannot transform



the code so that the execution of a cold path leads to incorrect computation. As opposed to that,
distillation can completely neglect the cold paths in a program. The resulting code, consisting of
only the hot paths in a program, can have many redundancies and inefficiencies that can be elim-
inated using standard compiler optimizations techniques. The first step in the process, extracting
hot sections of code and deciding task boundaries, is called program orienteering and is described
in more details in [2]. Here, we describe the design of an optimization framework that can optimize

such hot sections of code which are called distilled traces or just traces'.

1.2 Overview

The current program orienteering framework operates in the context of an MSSP simulator and
works on program binaries compiled for the Alpha platform. We had three choices for the design
of the optimizer:

e Implement the approximating optimizations for an intermediate representation that is essen-
tially the Alpha instruction set. This was the approach followed in [1]. The advantage of
this approach is that it can perform aggressive platform specific optimizations. Also, stan-
dard compiler optimizations can be “approximation enabled,” so that they can optimize the
program incorrectly if it helps speed up the program without introducing too many incor-
rect predictions. The disadvantage is the effort involved in implementing a large number of
compiler optimizations.

e Use an existing link-time or post-link time optimizer for Alpha like OM [3] or Alto [4].
Although such tools provide a higher level IR than the native instruction set, their IR does
not maintain certain MSSP specific information (like the mapping between the PC of some
instructions in a trace and their PC in the original sequential code), and hence cannot be
used easily in the context of distillation.

e Use an existing compiler framework which implements many standard compiler optimizations
but expose to it just the hot portions of the code. This approach makes available a large
number of optimizations and in many cases hiding the cold parts of the code from the compiler
itself creates many opportunities for optimizations like dead code elimination, redundancy
elimination, constant propagation, and many others. The disadvantage of this approach is
that it requires the translation of the trace code into the compiler’s IR and the translation
of the optimized IR back to machine code. Also, optimizations cannot be “approximation
enabled.” However, this a quick and relatively easy way to build an optimizer as compared
to a ground up implementation.

Considering the above choices we decided to reuse an existing compiler framework. We wanted
to use a compiler with an IR that was close to Alpha’s RISC instruction set. The LLVM compiler
framework [5] provides such an IR and a number of useful features as well. Hence we decided
to use it. Our optimization framework translates Alpha instructions into LLVM instructions and
optimizes the resulting LLVM program using optimizations built into LLVM. Finally, a back-end
generates Alpha instructions that form the distilled code. The main phases that form the optimizer
are:

!The difference between a task and a trace is that a trace can contain multiple tasks and task boundaries.



1. Front end — The front end translates the trace code into the LLVM IR, trying to create a
faithful representation of the trace code using the LLVM IR.

2. Optimize — This phase optimizes the resulting LLVM code using LLVM optimizations. In our
implementation we apply two simple but effective optimizations: Control Flow Graph (CFGQG)
simplification and dead code elimination. The aim is to eliminate computations that don’t
affect the values of task liveins for that task.

3. Instruction selection — The first step in translating the optimized LLVM IR back to Alpha
machine instructions is to select instructions to implement each IR instruction or group of IR
instructions. This phase, as in a general compiler, assumes an infinite set of virtual register
at disposal.

4. Register allocation — The set of virtual register used during instruction selection need to be
mapped to the finite set of registers available on the Alpha. In addition, at task boundaries,
the task liveins must be in correct registers and unlike a register allocator in a compiler here
the allocator cannot spill any virtual register to memory. This phase also does simple cleanup
of the code to eliminate redundant instructions.

5. Deployment — Finally, the optimized code for a trace must be deployed within the simulator
for execution.

1.3 Outline

Chapter 2 describes the front end of the optimizer and explains how it resolves the conflicts between
the LLVM IR and the trace machine code. It also explains how we choose to represent and retain
certain MSSP specific information that is required by the later phases of the optimizer. Chapter
3 describes our tree pattern-matching instruction selector and how it extracts the MSSP specific
information from the LLVM IR. Chapter 4 describes the implementation of an efficient register
allocation algorithm called linear scan [6, 7] and the changes required to the algorithm to satisfy
the requirements on the task code imposed by MSSP. Chapter 5 describes the deployment of the
optimized traces in the simulator and presents some statistics about the code generated by the
optimizer while optimizing traces in a subset of SPEC2000 integer benchmarks. Finally, chapter 6
concludes the thesis.



Chapter 2

Front End

The front end of the optimizer translates Alpha machine instructions to LLVM IR. Apart from
representing instructions and registers using LLVM, the front end also has to represent information
from the machine code that is specific to MSSP. This has to be done is such a manner that the back
end can extract the information for code generation irrespective of the optimizations applied. This
chapter explains how our front end works and how we choose to retain MSSP specific information
in the IR.

2.1 Issues in Representing Machine Entities

The front end is responsible for creating a faithful translation of the trace code and for that purpose
it has to take care of the differences between the machine code and the LLVM IR structure and
assumptions. The following are the main issues in representing various pieces of machine code using

LLVM IR:

e Machine registers — LLVM uses an IR that is in Static-Single Assignment (SSA) form [8].
This means that each variable in the program has a single static definition. Secondly, these
variables are typed. The trace code, on the other hand, uses machine registers and as such is
not in SSA form. The registers here can have one of the two types corresponding to integer
and floating point registers. An integer register can be used to hold integers of various sizes,
characters, and boolean values. The front end either has to analyze the code to deduce the
type of the value in a register or make conservative assumptions when translating the code.

e Machine and MSSP specific instructions — Apart from containing instructions that can be
represented directly using LLVM instructions, the trace code can also contain certain in-
structions that cannot be directly represented in the LLVM IR. Examples include the Alpha
UMULH instruction that computes the upper 64 bits of the product of two 64-bit integers.
The optimizer is required to handle these instructions appropriately and represent them in a
suitable manner.

e Multiple task entries — The code to be optimized for MSSP can, in general, have multiple
task boundaries in it and, hence, can have multiple entry points. LLVM, on the other hand,
requires that each piece of code (a Function) has a single entry point (it can have multiple
exit points). The front end should therefore “merge” all the trace entries into a single entry.



e Register assignment at task boundaries — The distilled code, in general, can have a different
register allocation than the original program. In MSSP the communication of task liveins
from the predictor to the task in question is done using the register file, i.e., at each task
boundary the register file of the processor executing the distilled code is copied and used
as a starting point for the execution of the next task. This implies that the distilled code
should not only compute the values of task liveins but at task boundaries these values must
reside in the registers that the next task expects them to be in. This can be done either
in hardware using a special functional unit to permute the register file appropriately or in
software by assigning task liveins appropriate registers. The hardware approach is expensive,
and software approach is feasible because register pressure in distilled code is less than that
in the original code.

In the following sections we describe how the front end addresses each of these issues.

2.2 Representing Registers and Instructions

As mentioned above, there are two issues in representing registers: types and multiple definitions.
Our front end takes a conservative approach and uses the coarse type information (integer vs. float-
ing point) that is readily available in the machine code. Thus, each machine register is converted to
either an LLVM ulong or double variable. The second issue, eliminating multiple static definitions,
is essentially the process of converting from a non-SSA IR to SSA, and an algorithm for this is
described in [8]. LLVM already provides an implementation of this algorithm which we choose to
use. The variables to be converted into the SSA form need to be allocated on a stack using LLVM
alloca instruction. LLVM’s memory to register promotion pass (mem2reg) can then convert these
stack allocated variables into variables in SSA form and insert SSA ¢ nodes at appropriate points
in the code. Thus, for each trace, the front end allocates 31 ulong and 31 double values on the
stack. During translation of individual instructions code is generated to load the input registers of
an instruction from this stack, compute the output value, and store it on the stack. At the end of
the translation the mem2reg pass eliminates these load/store instructions.

Translation of many individual instructions is straightforward because of the existence of a
corresponding LLVM instruction. We summarize how the front end handles each type of Alpha
instruction here:

1. Integer and floating point arithmetic — These instructions can be translated directly into their
LLVM counterparts. Many of these instructions have versions corresponding to quadword,
word, half-word, and byte-level operations, or single- and double-precision operations. Since
the front end uses coarse types for representing registers, when translating such instructions,
it generates code to first load a 64-bit value from the stack and then cast it to the appropriate
type. This approach is simple to implement and does not interfere with dead code elimination.

2. Load/Store — These are also translated to LLVM load/store instructions. LLVM versions
of these memory operations take a pointer operand whereas the Alpha versions compute the
address by adding a constant to the value of an integer register. The front end translates
these instructions into an addition, followed by a cast instruction to create a pointer of the
appropriate type, and finally an LLVM load/store.

3. Branches — Conditional branches are translated into a comparison to compute the branch
predicate followed by an LLVM br instruction.



4. Indirect branches — Indirect branches are represented using the LLVM switch instruction.
Each possible target of the indirect branch is assigned a unique integer. The front end defines
the 11vm.alpha. jump intrinsic that accepts the address register for the indirect jump as the
input argument and returns the unique integer associated with that target. This return value
is then used as the switch predicate. In addition, MSSP requires that the original PC be
associated with the target of any indirect branch. Therefore, the front end adds the mark_addr
intrinsic at the start of each basic block that is a target of this switch instruction.

5. Machine specific instructions — Certain Alpha instructions have no direct and easy mapping to
the LLVM IR. One option is to represent such instructions by complex pieces of LLVM code.
For example, a CTPOP instructions counts the number of set bits in a registers. Although it
can be converted into a loop in LLVM, it would be very difficult for the back end to recognize
such loops and regenerate the CTPOP instructions. Secondly, such detailed translation is not
required for optimizations like dead code elimination. Hence, we chose to represent such
instructions in a simpler manner using function calls. These function calls can be easily
recognized by the back end and translated to a single instruction. The LLVM compiler
framework has the ability to define intrinsic functions: functions about which the compiler
knows nothing and hence makes conservative transformations. One drawback of using such
intrinsics is that they interfere with the dead code elimination process: because of conservative
assumptions, LLVM cannot eliminate such function calls. Specifically, these functions can, in
theory, write to memory and hence cannot be eliminated. LLVM plans to provide some way
of specifying which intrinsics write to memory and which don’t. With that, these intrinsics
no longer interfere with the dead code elimination process. Table 2.1 shows some of the
intrinsics we defined and the type of instructions they are used for. The 11lvm.alpha.unimp
intrinsic is used to represent any non-control-transfer instruction for which the front end has
not defined a translation. This intrinsic enables reallocation of the registers used and defined
by the un-handled instruction without knowing the semantics of the instruction.

Intrinsic Name Purpose
umulh Upper 64 bits of the 128 bit product of two integers
vecop Alpha vector-like instructions like MINU, CMPBGE

read_gpr/read_fpr Register read at task entry
write_gpr/write_fpr | Register write at task boundary/function calls

verify Represents MSSP VERIFY instructions
unimp Non-control transfer instructions not handled by the front end
unimp_fix Unimplemented instruction for which registers cannot be renamed

Table 2.1: Intrinsics used by the front end to represent special instructions

6. Function calls — A function call can essentially be treated as a single instruction that uses and
defines multiple registers. In the most general case its an instruction that can read all the
registers and define all of them. Secondly, unlike un-handled instructions, the code executed
by the function call is not available and hence registers cannot be renamed according to the
register allocation of the code being optimized. We explain how we handle function calls in
section 2.5.



Before proceeding, we present an example of how a snippet of Alpha machine code is translated
into the LLVM IR. Figure 2.1 shows the translation of a simple Alpha code snippet that loads a
pointer and then increments it.

a) b) %a0 = al | oca ul ong
%t1 = alloca ul ong

ldg t1, 0(a0)

addq a0, 8, a0 ;translation for Idqg t1, 0(a0)
%al0v0 = | oad ul ong* %a0

%add.0 = add %aOvO0, O

%cast .0 = cast ul ong %add.0 to ul ong*
%l d.0 = | oad ul ong* %cast .0

store ulong %l d.0, ul ong* %t 1

; transl ation for addq a0, 8, a0
%alOvl = | oad ul ong* %a0
%add.l = add %aOv1, 8

store ul ong %add.l, ul ong* %a0

Figure 2.1: An example of translation of Alpha code to LLVM: a) the Alpha code, and b) its
translation to LLVM

2.3 Handling Multiple Task Entries

LLVM requires that each function has a unique entry point. In the case of MSSP tasks this may
not be the case. In general, each task boundary in the code forms an entry point into the distilled
trace. The front end represents multiple task entries by creating a dummy entry block for each trace
and adding an LLVM switch instruction to jump to the basic blocks that start at the task entry
points. Effectively, each entry point in the trace is assigned a number, and the LLVM function, on
entry, finds which task entry to execute using the find entry intrinsic and branches to that entry.
The back end can recognize such dummy entry blocks (by looking for the find entry intrinsic)
and ignore them during code generation.

When control enters the distilled code along one of the task entry points (usually after a mis-
speculation), the register values have been already set as a part of the misspeculation recovery and
the distilled code is expected to use these values. Thus, each task entry is an intrinsic definition of
all the registers live at that point. To model this fact, we use two LLVM intrinsics, read_grp and
read_frp, that are defined to read the value of an integer and floating point register respectively.
The single argument to these intrinsics specify which register to read. The front end uses these
intrinsics to set the values of the stack allocated registers at each entry point in the distilled code.
Thus, each task entry reads the values of all the registers using these intrinsics. This captures the
fact that all task entries are definitions of the machine registers.

The optimizer also needs to remember the original addresses of task entry points so that during
deployment of the optimized code it can appropriately fix up branches. For this purpose, at each
entry point a mark_addr intrinsic call is added. The single 64-bit parameter to this intrinsic is the
address of the entry point.



2.4 MSSP Specific Instructions

MSSP extends the Alpha instruction set with instructions to manage the creation and verification
of tasks and an instruction for profiling. The FORK and VERIFY instructions are used at task
boundaries. A FORK creates a new task and continues execution in the distilled code on the master
and in the verify block associated with the FORK on the slave processor. Since LLVM does not
provide such control transfer instructions, the front end models a FORK using a conditional branch,
with the next instruction following the FORK as one target, and the verify block as the other target.
The predicate of this branch is the output of the fork LLVM intrinsic. That way, the back end
can distinguish between these conditional branches and other conditional branches and generate
appropriate code. The verify block can contain arbitrary code and terminates with a VERIFY
instruction that starts the execution of the task on the slave. From the point of view of distilled
code, the VERIFY is effectively an exit from the code, so it is represented using a call to the verify
intrinsic followed by a return from the function. As mentioned above, at the end of a verify block,
the task liveins must be in the appropriate registers. The front end notes this fact by using another
pair of intrinsics: write_gpr and write_frp. These intrinsics take two parameters: an ulong or
double value and a register number. The semantics is that the input value is written into the
specified register.

The register read and write intrinsics inserted at task entry and verify points accurately capture
the registers live-in to a task at its entry and liveout to a task at its exit. They also serve as register
allocation hints for the register allocator. Specifically, if a particular value, say v0 is used as a
parameter to a register write intrinsic that writes to register r3, it may be beneficial to allocate 3
to v0. We describe the register allocation process in more detail in chapter 4.

The MASTER_END instruction is used to terminate the execution of the program in MSSP mode
and continue in a sequential mode. Again, this is effectively an exit from the distilled code. However,
unlike a verify block, none of the register values at the MASTER_END will be used for predictions
and hence all registers are dead at a MASTER_END. The front end models this using an master_end
intrinsic followed by a return. However, the register write intrinsics are not used here because all
registers are dead.

The current MSSP simulator also uses a PROFILE instruction to collect information about the
behavior of the program. This instruction is used currently to collect an edge profile and identify
the cold sections of the code. As far as the program visible processor state is concerned, these
profile instructions do not affect any of the registers and do not lead to any control transfer. Thus,
the front end chooses to represent them with a simple profile intrinsic (with arguments specific
to the profile instructions). This intrinsic neither defines not uses any registers and hence does not
interfere with dead code elimination.

The program orienteer may also create special blocks that are tagged as defining cold paths.
These blocks have an unconditional branch at their end and they represent cold parts of the code
at that point. Since the aim of the optimizer is to hide such cold paths during optimization, these
block are translated just as other blocks so that they branch to some other hot block in the trace.

2.4.1 Finding Task Liveins

For each VERIFY instruction the front end needs to know the registers live at that point. This
information can be computed either by doing an interprocedural register liveness analysis [4] or
profiling the liveins. When profiling the liveins, the distiller can deploy an unoptimized version of



the trace for some time and have the MSSP verification unit record the liveins for each task. The
advantage of the these profiled liveins is that they are relatively simpler to implement than a whole
program register liveness analysis and are much more precise!. Secondly, the profiling approach
also allows the frequency (or “hotness”) of each livein to be profiled. Thus, a livein to a task may
have an exposed use along an infrequently executed path. In such cases, it may be advantageous
to ignore that livein if it helps in optimizing the trace.

The profiled liveins approach can be used either statically or dynamically. In the static approach
the simulator is run once to collect the liveins for each task and a static table of the task liveins
is constructed. This table is then used to find the liveins for each VERIFY instruction. This is the
approach currently taken in the optimizer. The second approach would be to have the verification
unit collect the livein information for some time and then use that information to optimize traces
during the same run. We plan to implement this approach in future.

2.5 Function Calls

The register read and write intrinsics can also be used to translate function calls. In general,
the function called by the function call may not be available for optimization or the code may be
unknown. In the most conservative case, when the callee code is not available for analysis, the front
end has to assume that the called function can read and write all registers during the function call.
This means that, similar to a task boundary, the values that are liveins for the called functions
must be available in proper registers. Similarly, after returning from the function, the situation
is similar to a task entry and the return values from the function calls must written to the stack
allocated registers. There are three choices in deciding which registers to write before a function
call and which registers to read after a function call:

1. All registers — As stated above, this is the most conservative choice. However, it has the
advantage of simplicity and it also helps guide the register allocation process, as we will
discuss in Chapter 4.

2. Calling convention — A more practical approach is to assume that the code complies with the
Alpha calling convention. In that case, before the function call, the front end can add write
intrinsics for only those register that a compliant callee can read, viz., the argument registers
a0 - ab, saved registers sO - s5, sp, fp, at, and gp. During the function call, the callee may
save and restore some registers. These registers have the same value in the caller before and
after the function call and hence there is no need to add read intrinsics for them. Thus, as
per the Alpha calling convention, the front end can add read intrinsics for vO, at, and tO -
t11. Note that this still adds a large number of register read intrinsics after the function call.
However, it is expected that many of these read intrinsics will be dead, since the registers
they read are dead after the function call. In particular, all the temporary registers would be
dead at the function return point. The front end could also aggressively assume that this is
the case and do not insert read intrinsics for temporaries.

3. Interprocedural register liveness — A more efficient approach can be used when the callee code
can be analyzed. This can give information about the exact registers the callee reads and
defines and the front end needs to add write/read intrinsics for only these registers.

'Registers statically livein to a task along a path that was never exercised when the liveins were profiled will not
be in the profiled livein set. Thus, profiled liveins are potentially speculative.



4. Interprocedural optimizations — An even more powerful way to handle function calls would
be to optimize the caller and the callee together and apply inter-procedural optimizations like
register allocation.

Our front end currently uses the most conservative strategy stated above. It is simple to im-
plement and helps register allocation. The actual function call instruction is translated into an
1lvm.alpha.unimp_fix intrinsic. This intrinsic is used to represent instructions whose register
usage cannot be changed (i.e., they use and define a fixed set of registers). The single parameter
to this intrinsic is the bit pattern of the instruction, which is used to regenerate the instruction
during code generation.

A function return also needs to have some register write intrinsics before it. Generally, the
return instruction is a user of register ra which holds the return address. Secondly, function return
values (v0, £0, £1), the saved registers (sO - s6), and gp are live at the return. The front end adds
register write intrinsics for all these registers before the return.

2.6 Further Enhancements

Our front end is quite conservative currently, and can be extended to perform a more accurate
translation of the machine code into LLVM IR. Two possible improvements are:

e The front end can analyze the machine code to deduce more accurate type information for
registers. The instructions using a particular register can serve as a guide in this type de-
duction process. For example, if an integer register is always used in longword arithmetic
(ADDL, LDL, STL etc.), the front end can deduce its type as int. This would eliminate
many cast instructions that are needed when all registers are assumed to be 64-bit integers.
The front end has to take care of cases such as the same register being used to hold a long
integer in one section of code and a boolean in another section of code. This can be done if
unrelated uses of a register are segregated by creating “webs” as in register allocation [9].

e The front end can analyze the stack usage in the code to find stack allocated local variables
and their types. These can be directly converted into LLVM alloca instruction. This could
enable the optimizer to eliminate instructions that define stack allocated locals that are dead
in the distilled code. Note that MSSP requires that the stack frame layout and stack frame
size of the distilled code be the same as that of the original code. This is because a task livein
may reside in memory, in which case the distilled code should write the predicted value to the
correct memory location. Thus, the stack space allocated to dead locals cannot be eliminated
but the memory instructions that write to them can be.

Such enhancements can help in improving the effectiveness of the optimizations that are applied
to the distilled code.

2.7 Optimization

As explained in this chapter, the front end translates the trace into the LLVM IR using stack
allocated registers. The first step in the optimization process is to translate this non-SSA code
into SSA form. The LLVM mem2reg pass is run on the code resulting from the translation of
individual instructions. This pass promotes all the stack allocated “registers,” and eliminates the

10



load/store instructions created during the translation of individual instruction. When a use of
a register is reached by multiple definitions, SSA ¢ nodes are inserted at appropriate places in
the CFG. Next, the CFG simplification pass is run on the resulting code. When translating each
instruction individually, the front end creates separate basic block(s) for each instruction. The
CFG simplification pass simplifies the CFG by merging straight line chains of blocks into bigger
basic block. At this stage, the code is passed through the dead code elimination pass. This pass
eliminates dead computation that does not affect the values of task liveins (which are marked in
the form of write intrinsics at verify points). After these optimizations have been applied the code
is much simpler than the original code and is ready for translation back to Alpha instructions.

11



Chapter 3

Instruction Selection

This chapter explains the first step in translating the optimized LLVM IR back to Alpha instruc-
tions: selecting Alpha instructions to implement each instruction in the IR. This process is called
instruction selection. An instruction selector can either generate a one-to-one translation of each
IR instruction or can take advantage of the machine ISA to translate multiple IR instructions into
a single machine instruction. As an example, a load from memory followed by an address increment
can be translated into an auto-increment load, if such an instruction is available. In general, we
can define patterns in the IR that correspond to each machine instruction and then do a pattern
matching of these patterns against the input IR. Whenever a pattern for an instruction is matched,
the corresponding machine instruction can be generated. We use this pattern matching approach
in our instruction selector and use a tool called BURG [10] for constructing the instruction selector.
To avoid complexity, the instruction selection phase of the optimizer assumes the existence of an
infinite set of virtual registers for code generation. Thus, each instruction generated by the selector
is assigned a new output register. The register allocation phase then maps these virtual registers
to physical registers.

3.1 Instruction Selection Trees/Forest

The instruction selection tree is a data structure created from the IR to ease the process of pattern
matching. It is essentially the DAG [9] of each basic block in the IR, split at certain points to
create a tree. Specifically, if a DAG node n has 2 or more parents, then the DAG is split at n
and a subtree rooted at n is created. For each parent of the node n, a “representative” node is
added to its tree to represent the subtree rooted at n. The reason for splitting the DAG is to create
trees from the DAG, which is a prerequisite for BURG. Using the instruction selection tree instead
of the DAG for pattern matching has the advantage of simplicity but prevents pattern matching
that spans across common subexpressions. LLVM provides the necessary data structures for this
process, and given a function, creates a set of IR trees for each instruction (an instruction forest).
If two instructions, say I1 and 12, are in the same basic block such that I1 defines a value that
12 uses and 12 is the only user of the value defined by I1, then the tree for I1 is added as a child
of the root node in the instruction selection tree for I2. In general, an instruction can be a user
of an unbounded number of values, and the instruction selection tree can have an arbitrary arity.
BURG however requires that the input trees be ordered binary trees, with pointers to left and
right children. Under this restriction, a user of more than 2 values can be represented by either
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(i) using a binary tree of unbounded depth, or (ii) using a special node that represents a list of
uses. The second approach is simpler to deal with and is followed by the instruction selection tree
generator of LLVM. As an example, Figure 3.1 shows an LLVM basic block and its instruction
selection forest. Note that the leaf nodes of the instruction selection tree are either constants,
or values with multiple uses, or/and values defined outside the block. Similarly, the root of each
tree is either a value with multiple uses, or no uses (for example, the br instruction), or a single
use outside the block. Once such a tree is constructed, BURG allows us to define pattern(s) for

a) else:

%Vv0 = load ulong* %ptrl

%nl = add ulong %vO0, %n

%off = mul ulong %vO0, 4

%c = cast ulong* ptrl to ulong

%pl = add ulong %c, %off

%ptr2 = cast ulong %p1l to ulong*
%cmp = setle ulong %nl, %size

br bool %cmp, label %redo, label %exit

b) (v0) (no name) (ptr2)

(ptrl)

(ptrl) (v0) (4)

Figure 3.1: An (a) LLVM block and (b) its instruction selection forest

each machine instruction in the form of smaller trees similar to the trees in the instruction selection
forest and then it can do a pattern matching of these tree-patterns for instructions against the input
instruction selection tree. Essentially, the patterns can be viewed as defining a grammar for a tree,
and the pattern matching process as parsing an input tree against this grammar. Therefore, this
tree-pattern matching is also called tree parsing and the patterns are defined in the form of a tree
grammar. As an example, Figure 3.2 shows how the the second tree in Figure 3.1(b) can be parsed
against a simple tree grammar and the code generated from the pattern matching. Figure 3.2(a)
shows the tree grammar and the associated instructions. For each rule, the left hand side of the rule
is assigned number 0, and the non-terminals on the right hand side are assigned numbers starting
from 1. Figure 3.2(b) shows the parse of an example tree, with the bold numbers indicating the
rules against which the subtree matches, and also shows the instructions generated for this tree
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during the process of parsing. It can be seen that the for correct code generation, the instruction

a) 1) tree := Branch(cmp) bne $1.reg
2) cmp := SetCC(reg, reg) $0.reg = cmpCC $1.reg, $2.reg
3) reg := quad $0.reg = $1.reg
4) reg := Rep $0.reg = Reg assigned to tree root of Rep
5) quad := Add(reg,reg) $0.req = addq $1.reg, $2.reg
b) (no name) vr33 = addq vr4, vré

vr34 = cmple vr33, vr9
bne vr34, {redo,exit}

1

(cmp)

(Or®

o)\ (m
(size)

2
(v0) (n)

3,5

Figure 3.2: Code generation using tree parsing: a) the tree grammar, and the associated instruction
selection code, and (b) an example parse of a tree, and the generated code.

selection tree must be traversed post-order (i.e., bottom-up), so that the code for all the children
of a node is generated before the code for that node (if any) is generated. Secondly, the tree parser
needs to maintain certain attributes for each tree node and pass them to its parent. In our example,
the attribute of interest is the (virtual) register holding the output of an instruction. Also, at the
end of the parsing of a tree, the attribute of the root node may need to be preserved if that tree
has representative nodes in some other trees. In the next section, we describe a tool called BURG
that helps in writing such a tree parser.

Before proceeding, we make two observations about the tree-parsing process. The first is that
the children of a node in a parse tree may not be its immediate children. As an example, if the ISA
defined an instruction that compared two registers and branched based on the result, we would
replace rule 1 in the grammar in the example above with the rule tree := Branch(SetCC(reg,reg)).
In that case the children of br are the nodes nl and size, rather than the node cmp. Second, the
same node can have different children in different parse trees. Again, if in the above grammar, we
choose to retain the original tree := Branch(cmp) rule, the tree now has two parses. In one parse,
using rule 1, the br node has a single child, cmp, as shown in the figure. In the second parse, using
the new rule, the br node has two children, nl and size. In general, the children of a node in the
parse tree depends upon the grammar rule associated with that node in that parse.
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3.2 BURG Pattern Matching

BURG [10] is tree-parser generator, similar to yacc. It accepts a cost-augmented tree grammar, and
generates a tree-parser for parsing trees using that grammar. In general, the input tree-grammar
may be ambiguous, so that for a given input tree, 2 or more parses exist. This is a common situation
in instruction selection, so that a given piece of IR can be implemented using many different sets
of instructions. In that case, we would like to generate code with minimum “cost,” where the cost
is a user defined metric associated with each instruction. BURG allows each grammar rule to be
augmented with these costs. When multiple parses of a tree exists, it chooses the parse with the
minimum total cost. This parse is called an optimal parse and can be found in linear time.

BURG requires that each input tree node be associated with an operator that identifies the
type of the node. For nodes that represent instructions, this is normally the operator for that
instruction. In addition, some more operators are defined for nodes representing constants, tree
representatives, and use-list (used for nodes with more than 2 operands). Each grammar rule is
assigned an external rule number that identifies the rule. BURG accepts a file that specifies the tree
grammar and generates C code that contains helper functions which can be used to write a parser.
This approach allows us to add code for creating instructions and attributes at proper places during
the parsing process. The parser traverses each instruction selection tree twice. The first traversal
is a top-down traversal, called labeling, and the second, called reduction is a bottom-up traversal
during which the actual code generation takes place. BURG provides the following functions that
help in writing a parser (more details can be obtained in [10]):

e burm label — This function implements the first pass of the parsing process, and is called
on the input tree at the start of the process. It returns 0 if the input tree cannot be parsed
according to the grammar. This is the only function required to implement the labeling pass.

e burm rule — The second pass, the bottom-up traversal (or reduction), is generally imple-
mented as a recursive procedure similar to a recursive post-order traversal of a binary tree.
As mentioned before, the reducer needs to find out the children of the current node based on
the grammar rule associated with the current node. The burm rule function is provided for
exactly this purpose. It finds the external rule number of the grammar rule used to reduce
the input tree node.

e burm_kids — This function is used to find the actual children of the node. It accepts the
external rule number found using burm rule and the tree node, and returns a list of all the
children of that node in the parse tree. Once we have these children node the reducer can
recurse on each of them.

Our instruction selector defines a simple grammar that directly corresponds to the translation of
each Alpha instruction to LLVM IR. This is feasible because we apply only simple optimizations on
the generated IR. A more complex grammar would be needed if optimizations like constant folding
and common subexpression elimination are applied. In general, it is useful to extract common
“sub-patterns” from this grammar and define a grammar rule for them. When such a sub-pattern
is matched, no code is generated but an attribute value is computed and passed to the parent.
Actual instructions are generated when one of the “top-level” patterns match. Figure 3.3 show
the high-level algorithm of the instruction selector based on the functions provided by BURG. It
is basically a post-order traversal of the instruction selection tree with additional code to generate
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and propagate attributes from children to their parent. In function Reduce, the algorithm first
visits all the children and collects their attributes in an array. Then, it visits the root node and
uses the attributes of the children to generate code for the root. As mentioned before, this “code
generation” can result in the generation of an actual instruction (in case of top-level patterns)
or can result in the computation of the attribute of the root using the attributes of the children,
without generating any actual instruction (in case of sub-patterns).

3.3 Virtual IR

The instruction selection phase generates Alpha instructions that use both physical registers and
virtual registers. We call such instructions virtual IR (VIR). In addition, branches in VIR are not
fall-through as in case of the actual Alpha branch instructions, but specify both a true and false
target. The advantage of this is that the instruction selector does not have to keep track of the
actual layout of the generated code in the memory, which is required when fall-through branches
are used. Secondly, this choice is in conformance with the LLVM IR and hence code generation for
LLVM branches is simplified. Instructions in VIR can have one of the following types:

1. VInst — These represent all non-control-transfer instructions supported by the front end. Each
VInst maintains a pointer to an actual Alpha instruction (from OPTIR). The input/output
registers of this OPTIR instruction are initially set to r31. The actual input/output registers
are assigned to the OPTIR instruction after register allocation. Thus, a VInst is an instruction
whose input /output registers can be renamed as per the register allocation of the surrounding
code.

2. VInstBranch — These represent conditional and unconditional branch instructions. It is a
subclass of VInst and maintains a list of all the targets of the branch (including the fallthrough
target).

3. VInstUnimp — These represent non-control-transfer instructions that the front end translates
using the unimp intrinsic. These instructions maintain the original bits of the unimplemented
instruction they represent, which are used during code generation. Although marked as
unimplemented, register used and defined by these instructions can be renamed as per the
register allocation of the surrounding code.

4. VInstUnimpFix — These represent instructions that the front end translates using unimp_fix
intrinsic. Here again, the original bit pattern for the instruction is retained for code genera-
tion. However, registers used and defined during the execution of this instruction cannot be
renamed (for example, function calls). Thus, these instructions use and define a fixed set of
registers, and maintain two sets of registers: the register used and the registers defined during
their execution. The front end inserts write and read intrinsics for these registers before and
after the instruction respectively and these use/def register sets are also used during liveness
analysis.

5. VInstUnimpBranch — These represent indirect branches and maintain the original bit pattern
of the indirect branch. Here the register used by the indirect branch can be renamed as per
the register allocation.
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3.4 Extracting MSSP Specific Information

As mentioned in Chapter 2, the LLVM IR generated by the front end contains certain MSSP
specific information that needs to be extracted by the instruction selector and communicated to
the generated VIR. This information is mostly contained in the intrinsic function calls contained in
the IR, and can be easily extracted. In the following, we describe the key MSSP specific information
that is maintained and extracted from the IR:

1. Original Addresses — MSSP requires that the mapping between an instruction in the optimized
trace and its address in the original sequential code be maintained in some cases. The key
points in the trace code where such a mapping is required are: task entry points, FORK
instructions, and any instruction that can be the target of an indirect branch. Whenever
the front end finds such an instruction, it inserts the mark_addr intrinsic, with the original
program PC as the parameter. The instruction selector, on finding this intrinsic, extracts the
PC and annotates the VIR with this information. This annotation is mostly associated with
basic block containing the mark_addr intrinsic. In certain cases however (like function calls),
the original PC needs to be associated with the instruction rather than the block containing
that instruction. For such mappings, the front end creates a table of the mapping between
LLVM instructions and the original PC and the instruction selector looks up this mapping
to extract original PC for instructions.

2. Task liveouts — The front end marks the liveouts of a task by inserting register write intrinsics
before the verify intrinsic. These liveouts are physical registers and are live at the end of
a block containing a VERIFY instruction. These liveouts are required for correct live variable
analysis for register allocation. We choose to represent task liveouts by associating with each
basic block in VIR a set of liveout seeds, which is the set of registers that are always live at
the output of that block. This set is empty for all non-verify blocks. The liveness analysis
uses these liveout seeds by defining the liveouts of a block B as

liveout(B) = ( U livein(S)) U liveout_seeds(B)
SeSuce(B)

so that liveout seeds are always live at the end of the block.

3. Task liveins — The front end marks the registers live at a task entry by inserting register
read intrinsics. These register read intrinsics are converted into register copy instructions by
the instruction selector. These copy instructions are then used by the register allocator as
register allocation hints, as described in Chapter 4.

3.5 SSA ¢ Elimination

The SSA ¢ instructions in the IR are eliminated by the instruction selector by inserting register
copies in all the predecessors of the block containing the ¢, in accordance with the semantics of the
¢ instruction. This can introduce redundant register copy instructions along some program paths.
Specifically, if a predecessor p of a block b containing the ¢ is also a predecessor of some other block
b, then the register copy is redundant on the path from the predecessor p to b'. Figure 3.4 shows
an example. In such cases, the copy is really needed on the edge p — b. Such an edge whose source
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block has more than one successor and whose target block has more than one predecessor is called
a critical edge [9] and needs to be broken by introducing a block along the edge p — b as shown
in Figure 3.4(b). This can be done either in the VIR or in the LLVM IR. Since LLVM already
provides a pass to break critical edges, we choose to do this in the LLVM IR.

3.6 Pre-allocation Optimizations

After ¢ elimination, the instruction selector applies two optimizations to simplify the code before
register allocation. The first optimization eliminates empty unconditional branch blocks that might
have been introduced in the CFG during critical edge breaking. Such blocks are eliminated by
modifying all their predecessors to jump to the only target of the unconditional branch contained
in such blocks. The second optimization, hoisting, tries to create empty unconditional branch
blocks that can be eliminated by the first optimization. Specifically, it finds a block (b) with two
successors, one of which (m) has an MASTER_END instruction, and the other ¥ is terminated by an
unconditional branch to a FORK block, and tries to move all the instructions from o’ to b past the
conditional branch that terminates b. Such code motion is valid because none of the registers are
live at the MASTER_END. If the optimizer can move all the instructions from b’ to b, then ¥’ becomes
an empty unconditional branch block and can be eliminated (see Figure 3.5). This optimization is
able to eliminate some of the non-empty blocks that were introduced in the CFG during critical
edge breaking.
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// This function accepts an instruction selection tree and generates code that uses virtual
// registers. It returns the attribute for the root node, which generally is the virtual
// register holding the output of the instruction generated at the root node.
TreeAttribute InstructionSelect(InstrTreeNode root):
// The first pass: a top-down traversal
burm_label(root)

// The second pass: a bottom-up recursive postorder traversal
return Reduce(root)

// This function traverses the instruction selection tree bottom-up and in the process
// generates code and/or propagates attributes from the children of a node to that node.
TreeAttribute Reduce(InstrTreeNode root):

// Find the grammar rule applied to match the root node

eruleno = burm_rule(root)

// Find the children of the current node in the parse tree
InstrTreeNode children]
children = burm_kids(root, eruleno)

// Traverse the tree bottom-up and collect the attributes of the children
TreeAttribute child_attrs]]
for each child in array children

child_attrs[child] = Reduce(child)

// Use these attributes to generate code/compute attribute for current node
return GenCode(root, child_attrs, eruleno)

// This function either generates code for the root node using the attributes of the children
// or/and computes the attribute of the root using the attributes of the children and returns
// the attribute of the root node. If code is generated, the attribute of the root is normally
// the virtual register which holds the value of the root node.

TreeAttribue GenCode(InstrTreeNode root, TreeAttribute[] child_attrs, int eruleno)

Figure 3.3: BURG based instruction selection. The actual function for code generation depends
upon the grammar rule and is not shown here for brevity.
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a) b)

b' b b' b

critical edge

Figure 3.4: Critical edge breaking: (a) a critical edge p — b, and (b) splitting of critical edge p — b
by adding a block s between p and b.

a) b)
FORK FORK
) /
MASTER MASTER
END END

Figure 3.5: Code hoisting to a MASTER_END predecessor: (a) before hoisting, and (b) after hoisting
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Chapter 4

Register Allocation

Since the instruction selector assumes an infinite set of virtual registers available for code generation,
the optimizer needs to map these virtual registers to the finite set of physical registers available
on the Alpha. This register allocation process also has to make sure that certain MSSP-specific
requirements are satisfied. The first is that at task boundaries, the task liveouts must be in the
register in which the next task expects them to be. The VIR encodes information about the physical
registers that need to hold the liveouts by using register copy instruction (from a virtual register
to a physical register) just before the VERIFY instruction. The second requirement is that unlike
a compiler, the register allocator is not allowed to spill virtual registers. This is because there
could be a liveout for the task that resides on the stack and any spilling done by the allocator will
change the layout of the stack frame of the optimized trace code and will result in misspeculations
because of the mismatch of stack resident liveouts. This chapter explains the linear scan register
allocation [7] algorithm used by the optimizer and some of the changes made to it to satisfy the
requirements imposed by MSSP.

4.1 Linear Scan Register Allocation

Linear scan register allocation is a simple linear time algorithm for global register allocation [7] that
uses live intervals to represent variable lifetimes. A live interval of a variable is the sections of code
in which that variable is live. After live intervals have been computed, the algorithm does a single
linear scan over the live intervals and either allocates a register to a live interval or decides to spill
it. More details of the linear scan algorithm can be found in [6, 7]. Our basic linear scan register
allocation algorithm is the same as the one proposed in [7], augmented with certain heuristics to
avoid spilling. In the following sections, we describe some details about our implementation.

4.1.1 Preallocation

As mentioned in previous chapters, the optimizer maintains register allocation hints for the register
allocator in the form of register read /write intrinsics in the LLVM IR and register copy instructions
in the VIR. Our initial implementation of the linear scan allocator was designed to consider these
hints when allocating registers. Specifically, when multiple free registers were available for allocation
to the current live interval in the linear scan process, the allocator would look for a register copy
to/from a physical register in the uses and definitions of the live interval. If the live interval was
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involved in such a register copy and the corresponding physical register was available for allocation,
the allocator would allocate that register to the live interval. Although useful, this heuristic was
not effective, because many times the register involved in the register move was not free. This was a
result of a bad register allocation decision somewhere before the current live range was considered.
In effect, the allocator did not exploit the register allocation hints as well as it could.

To prevent this problem, our implementation first performs a preallocation step that enforces the
register allocation hints by preallocating such live intervals to their preferred registers beforehand,
instead of during the linear scan process. Whenever the instruction selector creates a register
allocation hint in the form of a register copy between a virtual register v and a physical register
r, it adds an entry in a preallocation table. Before starting the actual linear scan allocation, the
preallocator does a single pass over all the instructions in the VIR, and for each virtual register
in the preallocation table, replaces it with the corresponding physical register. This preallocation
process helps the actual linear scan algorithm by making certain “bad” register allocation decisions
illegal. An example is shown in Figure 4.1.

a)
Hint: r1 = vl

vO

vl

Free={r0, r1} ro

Enforced hint: rl = v1

v0

rl

Free={r0} [Q  —

Figure 4.1: Preallocation makes certain bad register allocation decisions illegal: (a) Both r0 and r1
are free when the live interval v0 is considered. If r1 is allocated to v0, no free registers would be
available when live interval v1 is considered, and (b) When the allocation hint 71 = v1 is enforced
by preallocation, only r0 is free when the live interval v0 is considered for allocation, making the
allocation of r1 to v0 illegal.

Preallocation reduces the number of register allocation decisions that the actual linear scan
allocator has to make and thus decreases the probability that register allocation will fail. In general,
the more hints the front end can insert, the better are the chances of a successful register allocation.
Therefore, when handling function calls, the front end writes all registers before the call and reads
back all the registers after the function call. This conservative approach does interfere with the
dead code elimination process, but helps in register allocation. As an example, an instruction that
writes to an argument register, say a3, before a function call may be dead because a3 is not a livein
to the callee. However, in the LLVM IR, when all register are written to before a call, the compiler
cannot eliminate that instruction because it sees a single use of the output in a write intrinsic,
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which it does not consider dead. This conservative approach helps the optimizer optimize many
traces on which the register allocation would fail otherwise. A less conservative approach can be
used when the allocator is more careful about the allocation decisions and their effect on future
allocations and can aggressively exploit the register allocation hints.

4.1.2 Live Intervals

After preallocation, the allocator constructs live intervals for the virtual and physical registers.
Live intervals for physical registers are called fized live intervals. The first step in constructing
live intervals is an iterative register liveness analysis [11]. This finds the (physical and virtual)
registers that are live at the entry and exit of each basic block in the VIR. Once this information
is available, constructing live intervals requires a single pass over the VIR. Each live interval is
represented as a set of (sorted) ranges, with each range represented by its starting and ending
point (both inclusive). An important issue in representing ranges is representing program points.
Simple representation like instruction number cannot distinguish between the program point before
and after an instruction, or at the end of a block and the start of its successor. We decided to
adopt the notion of slots [12] to represent program points. Slots can easily represent the differences
between program points before and after an instruction or block and make the computation and
manipulation of live intervals easier. Our implementation defines two kinds of slots (see Figure
4.2):

e Instruction slots — These slots represent the program points before and after an instruction.
Each instruction is defined to have two slots: a use slot and a def slot. A use slot is the end
of the live range for a virtual register which is dead after the instruction. A def slot is start
of the live interval of the virtual register defined by the instruction. An instruction slot is
represented by a triple <Block Number, Instruction Number, Subslot> where the subslot is
0 for a use slot and 1 for a def slot.

e Basic block slots — These slots represent the program points at the entry and exit of a basic
block. Each basic block is defined to have four slots, two at entry and two at exit. The
motivation is to allow the merging of live ranges at block boundary and at the same time
prevent artificial interference between the live intervals of two variables at block boundary.
The four slots are used to start/end the live range of variables as follows:

— Entry Slot 0 — used to start the live range for a block livein that is also a liveout of the
previous block in the linear ordering of the blocks used by linear scan allocation. Not
used for entry blocks.

Entry Slot 1 — used to start the live range of a block livein that is not a liveout of the
previous block and all liveins of entry blocks

Exit Slot 0 — used to end the live range of a block liveout that is not a livein to the next
block and all liveouts of verify blocks.

Exit Slot 1 — used to end the live range of a block liveout that is also a livein to the next
block. Not used for verify blocks.

We also define slot equality to enable the merging of live ranges at block boundary. The exit slot-1
of a basic block is defined to be equal to the entry slot-0 of the next block. With this definition,
the live interval analysis can merge two live ranges [a, b] and [c,d] if b = c.
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BO

BO-Exit-0
BO-Exit-1 B1-Entry-0
Bl-Entry-1

use-slot
def-slot

Bl

Figure 4.2: Representing program points using slots: (a) instruction slots, and (b) basic block slots.
The figure shows that slot BO-Exit-1 and slot B1-Entry-0 are equal.

As mentioned above, entry and verify blocks are treated specially: all liveins to an entry block
begin their live range in slot 1 of the entry block and all liveouts of the verify blocks end their live
range in slot 0 of the verify block. Figure 4.3 shows the algorithm for constructing live intervals
given the register liveness information for each block.

4.1.3 Linear Scan Algorithm

Once the live intervals are constructed, the actual linear scan allocation algorithm is the same as
that presented in [7]. As mentioned above, our allocator cannot spill virtual registers. Thus, when
the allocator finds that there is no free register available for allocation to the current live interval,
it does not spill that register and instead declares a failure in register allocation. In such a case, the
optimizer does not optimize the trace, and the simulator continues using the unoptimized trace.
However, to prevent such register allocation failures, we have implemented three heuristics that
can help the allocator in making better allocation decisions. These heuristics are as follows:

e Register copies between virtual register — If there is a register copy instruction v1 = v0 and
v0 has been allocated a register r0, then v1 will also be allocated r0 if 70 is free at the time
the live interval for v1 is considered.

e Idioms — For some instructions, we can determine the preferred register for their input/output
virtual registers and allocate this preferred register if its free. As an example, at the start of
a function there can be an Alpha instruction 1da sp, -32(sp), which would get translated
into the following VIR instruction: 1lda vri34, -32(sp). Here, the preferred register for
vri34 is sp.

e Register constrain — This is a greedy heuristic that helps the allocator choose the correct
register when more than one free register is available for allocation. For each physical register,
the allocator keeps track of the unhandled (i.e., not yet allocated a register) live intervals that
overlap with it. It maintains this information in the form of an interference table, which is
an array of set of live intervals. This interference table is an indicator of how “constrained”
the physical register is. Whenever a register is allocated to a live interval, the live interval
is removed from the all the interference table entries. When more than one free register
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// Construct live intervals for the virtual registers in function F
BuildLivelntervals(VFunc F):
for each block b € F in linear scan order
prevLiveouts = liveouts for previous block. ¢ for the first block or an entry block
nextLiveins = Liveins for next block. ¢ for the last block or a verify block.
blockRange[v] = ¢ V virtual registers
for all registers v in liveins(B)
slot = entry slot 0 if v € prevLiveouts, entry slot 1 otherwise
blockRange[v] = [slot,slot]

for all instruction I in block b
for all input registers in of I
blockRange[in].end = use slot of T
for all output registers out of I
Add blockRange[out] to the live interval for out if its defined
blockRange[out] = [def slot of I, def slot of ]

for all registers v in liveouts(B)
slot = exit slot 1 if v € nextLiveins, exit slot 0 otherwise
blockRange[v].end = slot

for all live ranges [ in blockRanges
Add [ to the live interval for [.vreg

Delete any empty intervals

Figure 4.3: Algorithm for constructing live intervals given live register information

is available for allocation, the allocator chooses the register that is most constrained (the
register with maximum interference set size), keeping the less constrained registers free for
future allocations.

The order in which these heuristics are applied also affects the success of register allocation. In
general, the register copies and idioms are more effective in the entry and verify blocks and register
constrain is more effective otherwise. Thus, the allocator assigns a higher priority to copy and
idiom heuristics if the block containing the start or the end of the current live interval is an entry
or verify block and assigns the register constrain heuristic a higher priority otherwise.

4.2 Rewrite and Code Cleanup

After successful register allocation, the rewrite step is a simple replacement of each virtual register
in the VIR with its allocated physical register. This step requires a single pass over the VIR. This
rewrite step can render many instructions in the VIR either dead or redundant. Secondly, the
register allocated code can be simplified further by eliminating unconditional branches. Thus, after
rewriting, the optimizer applies the following simple optimizations:

e Dead instruction elimination — If the output of a non-control-transfer instruction is either
r31 or £31 and the instruction does not have any side effect (e.g, stores and prefetched) then
that instruction is dead and can be eliminated.
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e Redundant instruction elimination — After allocation, many register copy instructions are
rendered redundant as their source and destination registers are the same. Such instructions
are eliminated.

e Unconditional branch elimination — In many cases, after dead and redundant instruction
elimination, a block is left with just a single unconditional branch. For example, blocks
added to the CFG for splitting critical edges can be rendered like this after allocation. For
such blocks, the optimizer eliminates them and modifies all of their predecessors to jump to
the single successor of the eliminated block.

After these steps, the optimized trace is in the form of register allocated VIR. The final step in
the optimization process is to generate Alpha machine instructions from this VIR and deploy the
resulting code in the simulator. The details of this step are described in the next chapter.
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Chapter 5

Deployment

Deployment of the optimized code consists of creating Alpha machine instructions from the reg-
ister allocated VIR, allocating memory for the optimized code, fixing the branch instructions as
per the memory allocation, and communicating to the simulator the MSSP specific pieces of infor-
mation that are required for correct execution of the optimized code. The program orienteering
framework [2] ensures that all the branches in the trace code are intra-trace; however there may
be function calls from one trace to another and those need to be fixed to resolve to the optimized
versions of the trace code. Much of this functionality is provided by the orienteering framework.
Thus, deployment of the optimized code from the perspective of the optimizer consists of providing
correct information to the orienteer so that it can perform the actual deployment tasks. This con-
sists of converting the trace to be deployed into an IR that is essentially Alpha machine instructions
(which we call OPTIR) and annotating the OPTIR with the MSSP-specific information present
in the VIR. These annotations consist mainly of the original PC for certain basic blocks and in-
structions and certain flags that need to be preserved throughout the optimization process. This
chapter explains some of the prerequisites of the orienteer and the translation of VIR to OPTIR
as per these prerequisites.

5.1 Generating Alpha Instructions

One of the basic requirements of the deployment phase is creating OPTIR Alpha instructions from
instructions in VIR. This depends upon the type of the VIR instruction for which the code is to
be generated:

1. VInst — Since a VInst maintains a pointer to the corresponding OPTIR instruction, code
generation for such instructions simply consists of renaming the OPTIR registers as per the
register allocation.

2. VInstBranch — For conditional branches, code generation consists of renaming the predicate
register of the underlying OPTIR instruction, and informing the orientieer the targets of the
branch. The orienteer requires that the fall-through target (i.e., target taken when the branch
predicate is false) be specified first and then the taken target. Given this information, the
orienteer can add appropriate offset to the branch instruction and reverse the sense of the
branch if necessary. For unconditional branches, the orienteer requires that the actual branch
instruction should not be present in the OPTIR. Instead, the optimizer just needs to inform
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the orienteer that an unconditional branch exists, and the orienteer can add the actual branch
instruction.

3. VInstUnimp, VInstUnimpBranch — For these instructions, the original bit pattern is first
used to create an OPTIR instruction. Then the input/output registers are renamed as per
the register allocation.

4. VInstUnimpFix — Since registers cannot be renamed for these instructions, code generation
consists of creating an OPTIR instruction using the original bit pattern of the instruction.

5.2 MSSP-Specific Annotations

Annotating the OPTIR with MSSP-specific information generally consists of straightforward trans-
fer of the annotations from the VIR to the OPTIR. In some cases, the blocks in OPTIR need to
be annotated with some flags that must be extracted from the original trace code that was the
input to the optimizer. This can be done by adding an LLVM intrinsic for such flags and using
them to recreate the necessary flags. However, a better option is to maintain a pointer to the basic
block in the input trace code and use it to extract the necessary flags. When this original block is
available, it can also be used to find the original PC annotations. Thus, whenever the original PC
or flags need to be preserved throughout the optimization process, the front end adds a mark_addr
intrinsic, with its argument a pointer to the block in the input trace. This pointer can then be used
to extract original PC, flags, and any other information that the OPTIR needs to be annotated
with. Thus, for each basic block in VIR, the optimizer checks if the block has an original block
pointer annotated to it. If yes, it transfers the original PC and a subset of flags to the new OPTIR
block.

5.3 Fixing Function Calls

During deployment, the function call instructions in the optimized trace need to be changed to
point to the appropriate version of the callee. As mentioned before, the optimizer may bail out
when optimizing some of the traces. Thus, the optimization process creates new versions of some
traces and retains the old versions for some traces. In such a case, function calls in the old traces
also need to be updated to point to the optimized versions of the callees, if the callee was optimized.
To facilitate this process the optimizer creates a table that maps from the unoptimized trace to the
optimized trace. If a trace has not been optimized, the entry in this table maps to the unoptimized
trace itself.

The mechanism for fixing up function calls in optimized traces is different from that for unopti-
mized traces. For optimized traces, the optimizer itself is responsible for modifying the call graph
edges to point to the new callees. After all the traces have been processed and the above mentioned
map constructed, the optimizer does an additional pass over the optimized traces. During this pass,
it finds call graph edges whose source is in an optimized trace and whose destination is a trace
that the optimizer was able to optimize. Each such edge is fixed up to point to the optimized
version of the callee trace. For unoptimized traces, the orienteer provides a function that, given an
unoptimized and optimized callee, can replace all the references to the unoptimized callee with the
optimized callee.
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After these steps have been performed, the OPTIR is ready to be passed back to the orienteer,
which does code layout (allocating memory, assigning addresses, and resolving branches) of the
optimized trace, and then writes them to the memory. It also changes the function call instructions
in the unoptimized traces and write out these callee-updated traces as well. After this process is
complete the optimized code is ready to run in the simulator.

5.4 Results

This section presents some data on the code generated by the optimizer when optimizing traces in
a subset of SPEC2000 integer benchmarks. These results were collected using profiled task-liveins.
We found that the optimizer was, on an average, able to eliminate 3.2% of the instructions during
dead code elimination. As mentioned before, the optimizer bails out and declares a failure when
it cannot optimize a trace. We collected statistics about the various causes of bail-out and present
them in Table 5.1.

Benchmark | Traces | Unopt Opt Opt | % Elim | Forbid | Reg | Tree No

Insts | Traces | Insts Fail | Fail | Livein
bzip2 7 420 7 375 10.7 0 0 0 0
crafty 70 4014 62 | 3943 1.8 0 6 2 0
eon 135 5896 112 | 5739 2.7 2 10 3 8
gap 1 16 1 16 0.0 0 0 0 0
gce 160 7399 136 | 7041 4.8 0 10 0 14
gzip 13 v 13 752 -4.6 0 0 0 0
mcf 1 16 1 16 0.0 0 0 0 0
parser 21 475 18 460 3.2 2 1 0 0
perl 273 | 11847 202 | 11347 4.2 ) 16 2 48
twolf 31 1541 29 1449 6.0 1 0 1 0
vortex 107 5324 83 | 4915 7.7 1 1 0 22
vpr 33 2116 32 | 2070 2.2 1 0 0 0
Avg 3.2

Table 5.1: Optimization results on a subset of SPEC2000 integer benchmarks: Traces is the number
of traces collected by the orienteer, Opt Traces is the number of traces the optimizer was able to
optimize, Unopt Inst is the sum of the number of instructions in the optimized traces before
optimization and Opt Inst is the same after optimization, % FElim is the percent of instructions
eliminated during optimization, Forbid is the number of forbidden traces, Reg Fail is the number
of traces on which the register allocation failed, Tree Fail is the number of traces that generated
trees that could not be parsed by the instruction selector, and No Livein is the number of traces
which were not optimized because no live-in information was available.

As can be seen from the table, the optimizer is able to process a majority of the traces but is not
very effective in eliminating dead code. The reason for this is the use of LLVM intrinsic functions to
represent instructions that have no direct translation to LLVM IR. LLVM conservatively assumes
that these instructions may write to memory and does not eliminate them. In future, LLVM
plans to provide a way of specifying the intrinsics that don’t write to memory. This will help in
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eliminating more dead code and will increase the percent of instructions eliminated.

For some traces, although the optimizer is able to optimize them, the resulting code has problems
in deployment. An example is described shortly. For such traces, we choose to exclude them from
the optimization by either adding their start address to a list of forbidden traces or setting the
liveins for one of the VERIFY blocks in them to an empty set. In both cases, the optimizer bails out
and the simulator continues using the original code. We also found that in some traces, the trees
created from the LLVM IR cannot be parsed according to the grammar defined by the instruction
selector. This is most probably an indicator of a bug or an incomplete grammar. We plan to
address this issue in future.

As an example of a trace that the optimizer is able to optimize but fails in deployment, consider
the trace in Figure 5.1. Both the indirect branch and the function call have block B as one of their
successors. MSSP requires that any successor of an indirect jump or a function call be associated
with its original PC. If however, the edge from the JMP to the block B was split as a part of
critical edge breaking, the same original PC now maps to two different addresses in the optimized
code. Since MSSP maintains a single mapping between the original PC and the distilled PC, the
code generated by the optimizer cannot be deployed as is. One solution to this problem would
be to modify the LLVM critical edge breaking pass to prevent the breaking of critical edges like
JM P — B in which the target requires an original PC for resolving indirect branches.

a) b)
JMP JMP

Orig PC=t ;
B' CALL

Orig PC=t

B

Figure 5.1: Deployment failure when a critical edge whose target is the target of multiple indirect
jumps in broken.

We also collected data when the optimizer does not do any optimization (Table 5.2). In such
cases, the “optimized” code size can be greater than or less than the original code size. The
reason for increase in the code size is the extra register copy instructions introduced during register
allocation. Also, when no optimizations are applied, the register pressure is the same as in the
original trace code and our simple linear scan allocator fails on more traces than in the case when
optimizations are applied. In some case, however, the size of the optimized code is less than that
of the unoptimized code. This happens because of the difference in the layout of the unoptimized
and optimized traces, which helps in eliminating redundant unconditional branch instructions. The
program orienteer can introduce such branches when a trace consisting of two or more nested loops
is distilled and the outer loop is distilled before the inner loop. In such cases, the orienteer adds
the FORK and VERIFY instructions for the task that starts at the inner loop at the end of the code
forming the outer loop (see Figure 5.2). When such a trace is passed through the optimizer, it
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Benchmark | Traces | Unopt Opt | Opt | % Change | Forbid | Reg | Tree No

Insts | Traces | Insts Fail | Fail | Livein
bzip2 7 285 6| 282 1.05 0 1 0 0
crafty 70 2751 55 | 2825 -2.69 0 13 4 0
eon 135 5119 104 | 5254 -2.64 2 16 3 8
gap 1 16 1 16 0.00 0 0 0 0
gee 160 5189 128 | 5198 -0.17 0 18 0 14
gzip 13 343 11| 358 -4.19 0 2 0 0
mcf 1 16 1 16 0.00 0 0 0 0
parser 21 475 18 | 468 1.47 2 1 0 0
perl 273 9056 186 | 9001 0.61 5 23 11 48
twolf 31 1235 28 | 1231 0.32 1 1 1 0
vortex 107 4376 77 | 4300 1.80 1 4 3 22
vpr 33 1703 30 | 1704 -0.59 1 2 0 0
Avg -0.42

chooses a different code layout and is able to “inline” the FORK (Figure 5.2(b)).

Table 5.2: Optimization results with all optimizations disabled
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a) b)

next: fork
next:
fork verify
br next
verify

Figure 5.2: Redundant br instruction elimination during optimization: (a) a trace with two nested
loops, and (b) the optimized trace with “inlined” FORK
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Chapter 6

Conclusion

We described the motivation for and the design and implementation of a framework for optimizing
code within the context of the MSSP paradigm. Our framework is built on the top of the program
orienteer and the LLVM compiler and is designed to address the requirements and restrictions
imposed by MSSP. Currently it applies only simple optimizations like dead code elimination and
its effectiveness is limited by the use of LLVM intrinsic functions and the simple linear scan allocator.

This framework can be extended and improved in many directions. As mentioned in Chap-
ter 2, the front end can analyze the trace code more rigorously to eliminate cast instructions and
thus create more compact translations. A more general instruction selector can be constructed
by modifying/extending the tree grammar or using an entirely different approach for instruction
selection (e.g., translating each LLVM instruction individually into an Alpha instruction). This will
enable the application of a number of optimizations provided by the LLVM compiler framework.
Our optimizer omits many important steps (like instruction scheduling, code layout, and peephole
optimization) in creating high-performance code. In general, this framework can be extended by
creating a more sophisticated front-end and back-end and implementing additional approximating
transformations during the optimization process.

Another direction for allowing the immediate use of all the LLVM optimizations would be
to apply approximations and optimizations on the LLVM IR created by compiling the original
sequential code (rather than translating the machine code). This has the advantage that the high
level semantic and type information is available in the LLVM IR and that, along with an execution
profile, can help in aggressive approximation.
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