
Brief Announcement: Transactional Memory and the
Birthday Paradox

Craig Zilles
University of Illinois at Urbana-Champaign

zilles@cs.uiuc.edu

Ravi Rajwar
Intel Corporation

ravi.rajwar@intel.com

ABSTRACT

Many word-based Software Transactional Memory systems (STMs)

have been proposed using tagless ownership tables, where read and

write permissions are granted at the granularity of all addresses that

map to a given ownership table entry. This optimization to reduce

overhead potentially results in false conflicts. Using address traces

from a multithreaded program, we demonstrate that the frequency

of these false conflicts grows superlinearly with both the TM data

footprint and concurrency and that increasing the size of the own-

ership table results in only a sub-linear reduction in conflict rate.

These somewhat surprising relationships have a theoretical founda-

tion that is also responsible for the (naively) unintuitive statistical

result generally referred to as the “Birthday Paradox.” We present

an analytical model based on random population of an ownership

table by concurrently executing transactions that correctly predicts

the trends in measured data. These results call into question the

viability of such an optimization that can undermine the scalability

and concurrency claims of software transactional memory.

Categories and Subject Descriptors: D.1.3 [Software]: Program-

ming Techniques–Concurrent Programming, E.4 [Data]Data Stor-

age Representations

General Terms: Algorithms, Performance, Theory

Keywords: Transactional Memory, Concurrency, Birthdays

1. TAGLESS OWNERSHIP TABLES
Word-based STMs [4] use a centralized ownership table that per-

mits the detection of conflicts between transactions. To detect con-

flicts, the ownership table tracks the read and write footprints of

each transaction. Even STM implementations that do not visibly

track readers would need to assign an ownership table entry for

the read location to record version numbers. To enable conflict de-

tection (when at least one concurrent access is a write), the table

must record the addresses of the data items accessed and whether

the accesses to that address were read-only or if it included writes.

In addition, each thread executing transactions maintains a (pri-

vate) per-thread log that tracks the state of the transaction (e.g.,

active, committed) and the transaction’s footprint including specu-

lative values for writes.

Figure 1 shows a proposed organization for an ownership table

common to many STM proposals [1, 2, 3, 5]. It consists of a table

of entries, each with two fields. The first field is the type of entry:

Read, Write, or Free. The second field holds either an owner that

identifies the one thread writing the entry (for Writes) or a count of

the number of sharers for the entry (for Reads). Program data is

mapped to ownership table entries by hashing the (virtual) address.

Copyright is held by the author/owner(s).
SPAA’07, June 9–11, 2007, San Diego, California, USA.
ACM 978-1-59593-667-7/07/0006.

0 x 1 0 00 x 1 2 00 x 1 4 00 x 1 6 00 x 1 8 00 x 1 A 00 x 1 C 00 x 1 E 00 x 2 0 00 x 2 2 00 x 2 4 00 x 2 6 0
W r i t e t h r e a d _ 0 � �W r i t e t h r e a d _ 0 � �R e a d � � 1 t h r e a dR e a d � � 2 t h r e a d sW r i t e t h r e a d _ 1 � �m o d e o w n e r # s h a r e r s0 :1 :2 :3 :4 :5 :6 :7 :

A d d r e s s S p a c e
Figure 1: A previously proposed organization for a tagless ownership
table. A mapping granularity of 32-byte cache blocks is shown.

Because the ownership table will, in general, be much smaller

than a program’s data memory footprint, this mapping process re-

sults in multiple data items mapping to the same entry of the own-

ership table. For example, in Figure 1, cache blocks at both address

0x120 and 0x220 map to ownership table entry 1. Because the ta-

ble is tagless—the particular address being accessed is not recorded

in the ownership table—entry 1 provides thread 0 exclusive ac-

cess to both blocks 0x120 and 0x220. Tagless tables are chosen

for their relative simplicity and space efficiency; no tag needs to be

stored, nor tag comparison performed, and the hassles of maintain-

ing a linked list for chaining is avoided.

However, this tagless design has the significant drawback of cre-

ating false conflicts. Without tags, any two accesses (involving a

write) from distinct transactions must be conservatively considered

a conflict. Due to the all-or-nothing nature of transactions, a single

conflict forces a transaction to either abort or stall until the con-

flicting transaction commits. Either way, these false conflicts can

reduce the achieved concurrency.

1.1 Empirical measurements of conflicts
To explore the relationship between the likelihood of an alias-

induced conflict in the ownership table and the characteristics of

the transactions being executed. For this study, we perform ex-

periments using synthetic transactions (using a real application),

primarily due to the lack of available applications that use transac-

tional memory. We collected address traces from a 4-processor (4-

warehouse) execution of the SPECJBB2005 multithreaded bench-

mark. Using these traces, we populate an ownership table (with

N entries) using C concurrent address streams until each stream

has written to W cache blocks. As we consume these traces, we

remove any true conflicts so we can focus on the aliasing-induced

conflicts found in real address streams. For each data point, we run

roughly 10,000 trace samples to compute a likelihood of an alias

occurring before all traces complete W writes.

From the data shown in Figure 2(a), relationship between con-

flict rate and transaction size is clearly superlinear and, for config-

urations with modest conflict rates (e.g., < 20%) the conflict rate

is almost proportional to the square of the size of the write foot-



10 20 30 40

write footprint size (in 64B cache blocks)

0

10

20

30

40
al

ia
s l

ik
el

ih
oo

d 
(%

)
1k
4k
16k
64k
256k

1000 10000 100000

ownership table size (# entries)

0

1

10

al
ia

s l
ik

el
ih

oo
d 

(%
)

80
40
20
10
5

2.0 2.5 3.0 3.5 4.0

concurrency

0

10

20

30

al
ia

s l
ik

el
ih

oo
d 

(%
)

40
20
10
5

Figure 2: Aliasing likelihood as a function of data footprint F (a), ownership table size T (b), and concurrency C (c). (a,b) data shown for C = 2,
F = [5, 10, 20, 40, 80] and T = [1k, 4k, 16k, 64k, 256k] entries. (c) data shown for F = [5, 10, 20, 40] and N = 64k.

print. The conflict rate as a function of the ownership table size

is initially slightly less than inversely proportional (i.e.., a 4-fold

increase in table size yields a 3-fold reduction in alias likelihood)

but the effectiveness of further reductions diminishes as the alias

likelihood approaches an asymptote at very large table sizes (Fig-

ure 2(b)). Finally, Figure 2(c) plots the conflict rate as a function of

concurrency. A strong superlinearity is evident here as well, with a

concurrency of 4 having an almost 6-fold larger conflict rate than a

concurrency of 2.

2. ANALYSIS
In this section, we demonstrate that these observed trends can be

explained through statistical analysis of the likelihood of collisions

occurring from acquiring read and write ownership of random en-

tries of a sparsely-populated ownership table. This effect strongly

relates to the so-called “Birthday Paradox,” which predicts that the

likelihood of two people sharing a birthday is greater than 50% in

an unintuitively small number of people (23). We compute closed

formed solutions for the relationships between the conflict rate and

transaction size, ownership table size. This model can be easily

extended to arbitrary concurrency [6].

For this analysis, we have simplified transaction execution in the

following ways.

1. there are no true conflicts between transactions.

2. the cache blocks accessed by a transaction have addresses

that are equally likely to map (using a hash function) to any

of the N ownership table entries.

3. ratio of cache block reads-to-writes is a constant, α, such

that α new cache block reads proceed every additional cache

block written.

4. the ownership table is sufficiently sparsely populated that

aliasing within a transaction’s footprint is negligible.

5. we are primarily concerned with tables with low conflict rates,

permitting the use of a sum of probabilities formulation.

A transaction can only commit if it reaches its end without a con-

flict. A false conflicts occur if addresses from two transactions (A
and B) map to the same entry of the ownership table and at least

one of them is a write. Specifically, when a read is performed to a

new cache block, its likelihood of causing a conflict is proportional

to the fraction of the ownership table containing write entries be-

longing to the other transaction: a W/N chance. When a write is

performed to a new cache block, its likelihood of causing a conflict

is proportional to the fraction of the ownership table containing

read or write entries belonging to the other transaction: a (R+W)/N

chance.

Given that R = αW , we can compute the likelihood that a con-

flict occurs every time transaction A reads α new cache blocks and

writes one new cache block, in terms of the current footprints of

transaction B:

α
(WB − 1)

N
+

(α + 1)WB

N
=

(1 + 2α)WB − α

N
(1)

Since both transactions are executed in lock step (WA(t) =
WB(t) = W (t)), there is the corresponding rate for transaction B.

Thus, as we extend both transactions, the likelihood of a conflict is

almost twice the likelihood computed in Equation 1; to compensate

for double counting the likelihood of the nth write by A conflicting

with the nth write by B, we need to subtract out 1/N . To compute

the likelihood of a conflict for transactions of a given size, we can

sum the incremental likelihoods for each step, and we expose the

observed relationships between conflicts and transaction footprint

and table size.

W
X

w=1

(2 + 4α)w − 2α − 1

N
=

(1 + 2α)W 2

N
(2)

The practical implications of this relationship are extremely acute

for a hybrid TM (e.g., [2]), where the STM will be used for trans-

actions that exceed the size of hardware resources. Empirically,

we have found a 4-way set-associative 32KB cache with 64-byte

cache blocks to overflow at W = 71 and α = 2, on average. Solv-

ing Equation 2 for N indicates that achieving a commit probability

above 50% requires an ownership table with more than 50,000 en-

tries. A 95% commit probability requires a table with over a half

million entries. With the modestly-sized tables proposed in the lit-

erature, a tagless organization will almost guarantee a maximum

concurrency of 1 for overflowed transactions.

3. CONCLUSIONS
From this study, we conclude that tagless ownership tables are

not a robust approach to implement transactional memory. In con-

trast, tagged ownership tables, which record addresses and use chain-

ing to handle aliasing, do not result in false conflicts and, when

appropriately sized, only infrequently require chaining.

4. REFERENCES
[1] A.-R. Adl-Tabatabai et al. Compiler and Runtime Support for

Efficient Software Transactional Memory. In PLDI, 2006.

[2] P. Damron et al. Hybrid Transactional Memory. In ASPLOS,

2006.

[3] T. Harris and K. Fraser. Language Support for Lightweight

Transactions. In OOPSLA, Oct 2003.

[4] J. R. Larus and R. Rajwar. Transactional Memory. Morgan

and Claypool, Dec. 2006.

[5] N. Shavit, D. Dice, and O. Shalev. Transactional Locking II.

In TRANSACT, 2006.

[6] C. Zilles and R. Rajwar. Transactional Memory and the

Birthday Paradox. Technical Report UIUCDCS-R-2007-

2835, University of Illinois at Urbana-Champaign, 2007.


