
Using Hardware Memory Protection to Build a
High-Performance, Strongly-Atomic Hybrid Transactional

Memory
Lee Baugh, Naveen Neelakantam, and Craig Zilles

Department of Computer Science, University of Illinois at Urbana-Champaign
Email: {leebaugh, neelakan, zilles}@uiuc.edu

Abstract
We demonstrate how fine-grained memory protection can be

used in support of transactional memory systems: first showing
how a software transactional memory system (STM) can be made
strongly atomic by using memory protection on transactionally-held
state, then showing how such a strongly-atomic STM can be used
with a bounded hardware TM system to build a hybrid TM system
in which zero-overhead hardware transactions may safely run con-
currently with potentially-conflicting software transactions.

We experimentally demonstrate how this hybrid TM organi-
zation avoids the common-case overheads associated with previ-
ous hybrid TM proposals, achieving performance rivaling an un-
bounded HTM system without the hardware complexity of ensuring
completion of arbitrary transactions in hardware. As part of our
findings, we identify key policies regarding contention management
within and across the hardware and software TM components that
are key to achieving robust performance with a hybrid TM.

1. Introduction
Transactional memory (TM) has been proposed as a concur-

rency control mechanism for shared memory programs which
presents a number of advantages over locks [16, 18]. TM relieves
the programmer from tracking the association of shared data with
locks, provides the concurrency of fine-grained locking without its
programming complexity, and facilitates the composition of criti-
cal sections. TM’s basic unit, the transaction, is a collection of
instructions that must appear contiguously in the program’s total
memory order. Transactions are executed optimistically; a TM sys-
tem detects and resolves conflicts between transactions, rolling back
transactions if they cannot commit atomically.

A TM proposal can be characterized by three orthogonal at-
tributes: the programming interface it provides, its performance,
and its hardware requirements (discussed in more detail in Sec-
tion 2). The ideal TM would provide clean semantics and a com-
plete programming model, introduce no overhead to transactions,
and require no special-purpose hardware support. While such an
ideal TM is likely unobtainable because of the tension between
these attributes in the implementation, we contend that existing pro-
posals fall well short of the ideal in one or more of the attributes.

We believe that hybrid TMs represent the most compelling ap-
proach to building TMs, but that existing proposals have signifi-
cant weaknesses. A hybrid TM executes most transactions using
a simple hardware TM (HTM), but handles large, long-running, or

x: 5 y: 5

write
protect

rd/wr
protectmemory

z: 3

atomic {
 *y = *x;
 ...
}

atomic {
 *x = *y;
}*z = *y;

a) b)

c)

d)

w: 0
executed as a

software transaction

executed as a
hardware transaction

executed
non-transactionally

Figure 1. Using fine-grained memory protection to achieve a
strongly-atomic, efficient hybrid TM: Software transactions
(a) use hardware memory protection to write protect values that
they read and read/write protect values that they write, as shown
in (b). Accesses to these values by non-transactional execution
(c) will raise a protection violation, preventing the transaction’s
atomicity from being violated. This same protection mechanism
also prevents conflicting hardware transactions (d) from violat-
ing the atomicity of software transactions, without the hardware
transactions having to check STM metadata; they can execute
without software overhead.

otherwise uncommon transactions using a software TM (STM) [9].
This approach promises the performance of an HTM in the com-
mon case and permits arbitrary transactions without the complex
hardware required by unbounded HTMs. It also permits much of
the system’s transactional semantics to be defined in software rather
than hardware. However, existing hybrid TM proposals suffer from
two notable drawbacks: they are subject to the non-intuitive seman-
tics resulting from not detecting conflicts between transactional and
non-transactional code, and the performance of their common-case
hardware transactions is sacrificed to ensure that hardware transac-
tions do not violate the atomicity of software transactions. In this
work, we propose a new hybrid TM design that addresses these
shortcomings of the previous work.

In our proposal, the STM transactions protect the memory lo-
cations that they are reading and writing using a hardware fine-
grained memory protection mechanism (e.g., Blizzard [32], Mon-
driaan Memory Protection [37], iWatcher [40]), as shown in Fig-
ure 1. This prevents accesses from non-transactional code from vi-
olating the atomicity of software transactions, because a hardware
fault will be raised before a conflicting non-transactional read or
write completes.1 In this way, we provide the STM with strong
atomicity [4], which, as we discuss in Section 2.2, is a property that
provides clean transactional semantics in a straightforward way.

1Software transactions disable these faults upon beginning and re-enable
them upon commit.

This technique, however, also permits hardware transactions to
detect conflicts with concurrently-executing software transactions
without slowing hardware transactions that do not conflict.
When a hardware transaction attempts to perform an access that
conflicts with an in-flight software transaction, it receives a protec-
tion fault, permitting the hardware transaction to avoid the conflict
by backing off or aborting. Since software transactions are required
to protect their transactional data with hardware memory protec-
tion, hardware transactions can run at full speed because no soft-
ware checks are required to detect conflicts with STM transactions.
In this way, our proposal adopts a pay-per-use philosophy, where
the costs of uncommon cases (such as cache overflows or I/O) only
affect overall performance in proportion to their frequency.

Our approach also follows the precept that hardware should pro-
vide primitives and not solutions [38]. Our hybrid TM uses a min-
imum of special-purpose hardware, instead consisting of two hard-
ware primitives — a best-effort hardware TM (Section 3.1) and
fine-grained memory protection (Section 3.2) — that have many
compelling applications unrelated to TM. We also avoid architect-
ing in hardware the hybrid TM’s semantics; instead, the STM is free
to define (and evolve) its full feature set, of which the hardware TM
accelerates a (likely common) subset. This approach is particularly
compelling as it is in the dark corners of TM (e.g., system calls, I/O,
waiting, open nesting) where the desired semantics have yet to be
determined, but where programs are likely to spend only a fraction
of their time.

This paper makes the following contributions:

• We show how hardware memory protection enables low-
overhead strong atomicity for STMs (Section 4.1).

• We demonstrate that this strong atomicity enables a hybrid
TM system with zero-overhead hardware transactions that
can execute concurrently with potentially-conflicting software
transactions (Section 4.3) and characterize the performance of
this hybrid TM (Section 5).

• We identify policies for managing contention between STM
and HTM threads and switching transactions to software that
achieve robust performance (Section 4.4).

We conclude (in Section 6) with a brief discussion of how this
architecture naturally permits the introduction of richer TM seman-
tics like transactional waiting and support for transactions that per-
form system calls and I/O.

2. Motivation
In this section, we discuss the three attributes of an ideal TM sys-

tem mentioned above — high performance, a clean and complete
programming model, and little dependence upon special-purpose
hardware — and pitfalls encountered by prior TM proposals.

2.1. High performance
As the goal of multi-core programming is to increase program

performance, many programmers will ignore transactions if they
significantly underperform locks, even if they offer a cleaner pro-
gramming model. For example, there has been little adoption of
STMs because their significant single-thread overhead causes them
to underperform lock-based code in any circumstance where lock
contention is not the only bottleneck.

We strongly believe that, to achieve widespread use, uncon-
tended transactions will need to incur little – if any – performance
overhead relative to non-transactional execution. If transactions in-
cur negligible single-thread overhead, programmers will be free to
use them for concurrency control in almost any piece of code, with-
out having to consider whether that code represents a scalability
bottleneck.

2.2. A clean and complete programming model
To be accepted by programmers, TM should expose a program-

ming model that is no more complex than locks. This poses a prob-
lem for bounded HTMs, for programmers should not have to reason
about how their transactions fit into the cache geometry and the time
quantum of all machines upon which they might run. Furthermore,
the TM’s semantics should be intuitive — however, some proposed
TM systems have exposed non-intuitive semantics, two examples
of which are shown in Figure 2.

First, a common practice with locks is to privatize a shared ob-
ject to one thread, typically by making all pointers to it inaccessible
from other threads. This allows the newly-private object to be ac-
cessed outside of a critical section. Intuitively, privatization should
work with transactions, but in some TM implementations it does
not. Figure 2a, demonstrates how in some TM implementations,
aborted transactions may still have accessed data that has been pri-
vatized by another transaction resulting in lost updates.

Second, there is the potential for lost writes due to false con-
flicts whenever the granularity for handling writes is larger than the
minimum-sized write (a common property of TM systems) and con-
flicts between transactions and non-transactional code are not de-
tected. Figure 2b demonstrates this problem in the context of neigh-
boring accesses to a byte array, where a non-transactional write is
lost when a transaction accessing a byte in the same transactional
word aborts.

While these unintuitive behaviors can be addressed in a piece-
meal fashion2 they can also be addressed by making the TM sys-
tem strongly atomic. Strong atomicity — requiring transactions to
serialize with conflicting non-transactional (nonT) accesses — has
been identified as a sufficient condition to avoid these and other
problems [4, 14, 35, 24]. While most HTMs, which detect con-
flicts via coherence, are strongly atomic, most STM proposals are
not, because doing so has required instrumenting non-transactional
code, the software overheads of which can be significant, even with
aggressive whole program analysis [35].

In addition, the boundary of the TM programming model is
still a very active area of research, with many compelling oppor-
tunities to extend the TM paradigm beyond the basic multi-word
compare-and-swap. Two recent examples are transactional wait-
ing and side-effecting transactions. Transactional waiting (intro-
duced as the retry primitive by Harris et al. [15]) can eliminate
lost wakeup bugs, but poses serious challenges for HTMs. Side-
effecting operations such as I/O are generally unsupported within
hardware or software transactions, requiring critical sections that
perform such operations to use locks. Transactions which support

2Privatization can be supported by stalling commit until all conflicting
transactions complete the abort process [33], and false conflicts are avoided
by preventing data within the same transactional word from being accessed
both inside and outside of transactions (but that is easier promised than guar-
anteed).

a) Under direct update, can obj->data be 0 after Thread 0 has completed?

list_t *head = new list_t;
head->data = 0; head->next = NULL;

Thread 0 Thread 1

TM_BEGIN();
obj->data = 100;
ABORT and begin to revert

original values
TM_END();

 obj->data = 50;
obj->data = 0 (revert)

list_t *obj = head;
head = head->next;

TM_BEGIN(); list_t *obj = head;

struct { byte a; byte b } S; S.a = 0; S.b = 0

b) Under direct update, can S.b be 0 after Thread 0 has completed?

Thread 0 Thread 1

TM_BEGIN();

S.b = 100;

S.a = 100;

ABORT and begin to revert
original values

(revert) S.a = 0

Figure 2. Two transactional examples that can have surprising outcomes: (a) Privatization: the transaction in thread 0 successfully
commits, privatizing obj and aborting the transaction in thread 1, but delayed rollback of thread 1’s transaction can discard non-
transactional writes by thread 0. (b) False Conflict: The transaction in a word-based STM logs the word containing both S.a and S.b
before writing to S.a. During the transaction, thread 1 updates S.b; a later abort of the transaction in thread 0 will discard the update to
S.b. These examples affect direct-updating TMs, but similar examples affect deferred-updating systems.

side-effecting operations [3, 23, 26] could permit transactions to be
the single synchronization mechanism to be used for all isolated
data accesses. As rich transactional programming models are still
an active area of research, it is desirable that they are not precluded
by a TM system – as would be the case if a TM’s semantics were
architected into hardware.

2.3. The Role of Hardware
Given the limitations of pure STMs, most of the TM commu-

nity have accepted that some sort of hardware support is necessary
to make TM viable. To this end, many unbounded HTM architec-
tures, which handle transactions completely in hardware, have been
proposed [1, 8, 29, 25].

We see three problems with these approaches. First, much of
the hardware complexity (relative to a bounded TM proposal) is
dedicated to handling cases that are expected to be relatively infre-
quent or not performance-critical. Second, these systems violate
the precept that hardware should provide primitives and not solu-
tions [38]; it seems particularly reckless to architect the TM seman-
tics into hardware when it is not yet clear what the desired seman-
tics are and while potentially different language environments may
require slightly different semantics. Third, these approaches intro-
duce significant hardware additions that are specific to transactional
programming, whose importance has yet to be quantified.

We believe that (at least for the foreseeable future) hardware
support for TMs should avoid fixing TM policy in hardware and
minimize the amount of special-purpose TM hardware. For this
reason, we explore a primitives-based approach to TM hardware, in
which the bulk of the hardware required by the TM is also useful in
contexts beyond transactional memory.

3. Hardware Primitives
In this section, we briefly introduce the two hardware compo-

nents used in our proposed system, both of which are derived from
previous work: a “best effort” hardware TM and fine-grained mem-
ory protection hardware.

3.1. BTM: a “best-effort” Hardware TM
BTM is a hardware-based best-effort TM system that provides

functionality similar to the original TM proposal by Herlihy and

Moss [16]. It supports transactions that fit entirely in the transac-
tional cache (L1 in our case), do not raise exceptions or receive
interrupts (including timer interrupts), require only flattened nest-
ing, and perform no I/O. These limitations notwithstanding, we find
that a significant majority of the dynamic transactions seen in our
benchmarks are able to execute completely in BTM.

BTM extends a write-back L1 cache to support speculatively
committed loads and stores in much the same way that has been
proposed for speculative multithreading [11], speculative lock eli-
sion [28], and many other hardware TM proposals (e.g., [1, 13]).
BTM operates at cache-block granularity, extending every L1 cache
block to include speculatively-read (SR) and speculatively-written
(SW) bits. As usual, appropriate coherence permission must be ac-
quired before completing transactional memory operations. When a
transactional load commits, it sets its block’s SR bit. Before a trans-
actional store commits, the cache makes sure that the to-be-written
cache block is clean (writing a dirty block to the next lower level
of the cache hierarchy) before completing the store and setting the
block’s SW bit. If a block with an SR or SW bit set is evicted from
the cache, the transaction is aborted; all transactionally-written lines
are invalidated, and all SR/SW bits are flash-cleared. As we discuss
in Section 4.4, BTM uses an age-based contention management pol-
icy.

This speculative execution hardware is exposed to soft-
ware through a simple interface (Table 1) which permits high-
performance implementations. Software specifies the beginning of
a transaction with a btm begin instruction, which specifies an
abort PC. When a (non-nested) btm begin is executed, a regis-
ter checkpoint is taken; if the transaction is aborted, this check-
point is restored and control is vectored to the abort PC. Software
can specify that a transaction can be committed or aborted with the
btm end and btm abort instructions. A (non-nested) transac-
tion is committed by flash clearing all SR and SW bits and discard-
ing the register checkpoint.

btm begin imm32 Begin a BTM transaction with abort ad-
dress given in immediate <imm32>

btm end End a BTM transaction
btm abort Abort a BTM transaction
btm mov reg, txr Copy transactional status register <txr>

to register <reg>

Table 1. The BTM ISA extension

set_ufo_bits addr, bits set the UFO bits for the memory line containing <addr> to <bits>
add_ufo_bits addr, bits OR <bits> into the UFO bits for the memory line containing <addr>
read_ufo_bits reg, addr return the UFO bits for the memory line containing <addr> in register <reg>
enable_ufo/disable_ufo turn on/off UFO faults on this processor

Table 2. UFO ISA extensions for manipulating UFO bits and enabling/disabling UFO faults.

ustm begin() Begin a USTM transaction (checkpoint regs, clear log, get seq number, set transaction state)
ustm end() End a USTM transaction (release ownership, discard checkpoint)
ustm abort() Abort a USTM transaction (undo writes, release ownership, restore chkpt)
ustm read barrier(void *addr) Acquire read permission for <addr>
ustm write barrier(void *addr) Acquire write permission for <addr>

Table 3. The USTM API: All functions return void.

In addition, BTM provides access to status registers that record
whether a transaction is executing, its current nesting depth and the
reason for the last transaction abort. Abort reasons include cache
set overflow, explicit abort, interrupt, illegal operation, conflict, ex-
ception, system call, uncacheable access, page fault, and hardware
nesting depth overflow. When an address is associated with the
event (such as the PC of an explicit abort or the page fault address)
it is also recorded so it can be made available to software.

The hardware atomicity provided by BTM is useful not only
for implementing TM systems. The same hardware can be used
for implementing speculative lock elision (SLE) [28, 31], where
lock-based critical sections are speculatively executed as hardware
transactions. More recently, hardware atomicity has been proposed
as a means to facilitate speculative software optimizations [27].

3.2. UFO: User-mode Fine-grained Hardware
Memory Protection

Fine-grained memory protection mechanisms refine the page-
granularity protection supported by virtual memory to granulari-
ties smaller than a page [32, 37, 40]. For this work, we consider
an iWatcher-style [40] mechanism that permits applications to in-
stall access permissions at a cache block granularity and achieves
zero execution overhead checking of these access permissions in
the common case when no faults occur. In Appendix A, we de-
scribe an enhanced implementation of iWatcher, called UFO, which
retains iWatcher’s modest hardware complexity, but also provides
multiprocessor-safety and supports arbitrarily large regions, context
switching, and swapping.

The implementation provides two User Fault-On (UFO) bits per
cache line: a fault-on-read bit and a fault-on-write bit. The protec-
tion bits and the data with which they are associated move together
throughout the whole memory hierarchy: caches, main memory,
and the swap file. User-mode instructions are provided for setting
and reading the UFO bits (Table 2), meaning that protection can
be added/removed with low overhead but that this protection is not
suitable for security applications. Setting UFO bits requires exclu-
sive coherence permission to ensure that all copies of a block have
consistent permissions.

When a processor performs an access not permitted by the
block’s current UFO bit settings, a UFO fault is raised. The pro-
cessor’s exception handling mechanism invokes a software handler
registered by the application. As with page faults, the faulting ad-
dress can be read from a special-purpose register, so that the UFO
fault handler can take the appropriate action. UFO provides the
ability to disable UFO faults on a per-thread basis, in the same way
that interrupts can be disabled; enable_ufo, disable_ufo
respectively set and clear a UFO enable bit, which is part of the
thread’s context.

In addition to the debugging applications for which iWatcher
was proposed [40], low-overhead fine-grained memory protection
enables a broad array of applications including speculative value
specialization optimizations [34], concurrent garbage collection [2],
and efficiently supporting self-modifying code in binary transla-
tors/optimizers. Like BTM, UFO is a multi-purpose mechanism.

4. System Organization
In this section, we introduce a novel hybrid TM implementa-

tion that addresses the concerns raised in Section 2. This hybrid
TM — comprised of the two general-purpose hardware mecha-
nisms described in the previous section — executes most transac-
tions directly in BTM with no instrumentation overhead, provides
strong atomicity to yield clean TM semantics, which can be ex-
tended (in software) to support a rich transactional programming
model. The section is organized around our three key contribu-
tions: we show how fine-grained memory protection can be used to
build a strongly-atomic STM (Section 4.1), we demonstrate how us-
ing such an STM enables a hybrid with zero-overhead HTM trans-
actions (Section 4.3), and we highlight the policies necessary to
achieve performance comparable to an unbounded HTM using such
a hybrid (Section 4.4).

4.1. USTM: Building a Strongly-Atomic STM
We show how fine-grained memory protection can be used by an

STM to provide strong atomicity at low overhead. As background,
we first describe the design of the eager-versioning, eager-conflict
detection cache-block granularity STM that we are using in this
work. We then show how we extend it to be strongly atomic.

The UFO STM, or USTM, is an STM library for C/C++. It im-
plements transactions using the API shown in Table 3. Notably,
calls to ustm read barrier3 and ustm write barrier
should be inserted (by a compiler) before read and write accesses to
shared variables, allowing the STM to acquire permission and per-
form logging as necessary before the operation is performed: like
BTM, USTM detects conflicts eagerly.

USTM relies internally on two data structures: an ownership
table (otable) shared between all transactional threads and a per-
thread transactional status structure (which includes a transaction
log). The shared otable, as shown in Figure 3, contains a record
for each cache line currently read or written by a USTM transaction
(making USTM, like BTM, cache-line granularity.) The otable
is logically organized as a chained hash table, with each entry con-
taining: 1) a tag to identify which cache line is specified, 2) the per-
missions held for the line, and 3) the set of transactions that have

3The use of the term “barrier” derives from the garbage collection litera-
ture and not the instructions required by weak memory consistency models.

∅R1,20x72

∅RW20x95

∅00x0

∅R20xc6

R1,20xe5

∅00x0

RW10x62
∅00x0

nextstateownerstag
bin 0
bin 1
bin 2
bin 3
bin 4
bin 5
bin 6

∅LOCK0x0

Figure 3. The USTM Shared Ownership Table (otable) is
organized as a chained hash. Entries contain a tag, owner list
and a state. Two special entries exist: null entries, which are
not in use, and locked entries, which can only be examined or
altered by the thread that holds the lock.

access to it. When it cannot be updated with a single atomic op-
eration, the head entry of a chain can be put into locked state to
provide isolated access to the chain to handle races between threads
updating the otable. In Figure 3, hash bins 0, 1, and 3 are un-
used, hash bin 4 is locked, and bins 2 and 5 have chains; realistic
implementations generally have at least tens of thousands of entries
to minimize aliasing.

The use of the otable is demonstrated by the
ustm write barrier pseudocode given in Algorithm 1.
This code optimizes for the common cases when chain length is
zero or one. If the requester has an existing entry for the block with
write permission, no action is necessary. Inserting an entry when
none is present or upgrading an existing entry when the requester
has sole read access can be done with a compare&swap. If one
or more other transactions currently own this entry of the otable,
conflict resolution is invoked as described below. If an entry is
present, but its tag doesn’t match, the whole chain is locked while
it is searched for a matching entry; if none is found, an entry
is inserted at the head of the chain. Once ownership has been
obtained, the cache block’s address and current values are logged
(eager versioning) and the write is performed to memory. The code
for ustm read barrier is similar in structure, except multiple
readers are permitted and only the block’s address is logged.

When a USTM transaction T aborts or commits, it removes its
entries from the otable. For each entry in T ’s log, the corre-
sponding entry in the otable is removed through a process simi-
lar to Algorithm 1: entries owned solely by T are removed, and T

is removed from the owners sets of any shared read-only entries.
If T is aborting, it restores to memory the logged values of cache
blocks to which it wrote.

The conflict resolution policy we employ for USTM is age-
based. An STM transaction that conflicts with another STM trans-
action stalls if it is younger than one of the transactions it conflicts
with, otherwise it aborts the conflicting transactions. Our current
STM implementation is blocking, relying on transactions to unwind
themselves on an abort. As a result, after a transaction notifies a
conflictor that it should abort, it waits, monitoring the transaction
status, until the abort process is complete before it continues. In
this way, USTM avoids contention on the otable and possible
livelock. Likewise, when a transaction is aborted, it waits until the
transaction that aborted it has retired before reissuing, also to avoid
otable contention and livelock.

4.2. Making USTM Strongly Atomic

USTM, as described in Section 4.1, is not strongly atomic.
The key to making USTM strongly atomic is to install mem-
ory protection for transactionally-accessed cache blocks when-
ever otable entries are created or upgraded. Specifically, fault-
on-write protection is installed by ustm read barriers, and
both fault-on-read and fault-on-write protection is installed by
ustm write barriers. To prevent USTM transactions from re-
ceiving protection faults for their transactional data, threads disable
UFO faults at the beginning of USTM transactions and re-eanble
them at commit.4

An example of the changes necessary to extend USTM to use
UFO is given in Algorithm 2, which replaces lines 5 and 6 of Algo-
rithm 1. Note that we ensure the atomicity of inserting the otable
entry and setting the UFO bits by locking the otable chain dur-
ing the insertion. Doing so prevents races between threads inserting
and removing an otable entry from leaving the UFO bits in a state
inconsistent with the otable. Other places in the STM code that
insert, upgrade (from read to write permission) or remove otable
entries must set, upgrade, and clear UFO bits, respectively, in the
same way.

The virtue of this approach to strong atomicity is that there is
minimal additional execution overhead for the STM and no over-
head for non-transactional code in the common case of no conflicts.
When a conflict does occur, the faulting non-transactional thread
vectors to a fault handler — registered by the STM before the first
transaction executes — which can stall the non-transactional access
or abort the conflicting transaction, based on a software-defined
contention management policy.

4.3. Bringing It Together: The UFO Hybrid

The goal of a hybrid TM [9], which composes a bounded HTM
with an STM, is to achieve HTM performance for most transac-
tions, but to support large transactions without the hardware com-
plexity of an unbounded HTM. Hybrid TMs can be implemented
by organizing the transactional code as shown in Figure 4. The new
component in this structure is the abort handler, which decides af-
ter a transaction is tried and fails in the HTM whether to retry the
transaction again in hardware or to failover in software. Our abort
handler is described in Section 4.3.1.

The other additional requirement and the traditional challenge
of hybrid TMs is to prevent HTM transactions from violating STM
atomicity,5 which previous hybrid designs solve in ways that nega-
tively impact hardware transactions (as discussed and demonstrated
in Section 5). This challenge, however, is easily surmounted in
a hybrid TM built on the strongly-atomic USTM. Because USTM
provides strong atomicity via fine-grained memory protection, ac-
cesses by hardware transactions are prevented from violating STM

4This does not affect correct operation of the STM, as conflict detection
between USTM transactions occurs as described in Section 4.1.

5Conflicts between HTM threads are detected by the HTM; those be-
tween STM threads are detected by the STM. The HTM’s isolation cannot
be broken by the STM because the HTM is strongly atomic; if, for example,
a STM transaction tries to write a variable read by the HTM, the request will
stall (if nacked) or the HTM transaction will be aborted. Without a strongly
atomic STM, however, nothing prevents an HTM transaction from observ-
ing the writes of, or writing to a variable previously read by, an uncommitted
STM transaction.

1: procedure USTM WRITE BARRIER(trans, addr)
2: index← GET INDEX(addr) ; tag ← GET TAG(addr)
3: entry state← MAKE ENTRY STATE(trans, addr, WRITE) . we hope to place this new entry in the otable
4: o← otable[index]; . read the head of the appropriate otable chain
5: if o = 0 then . ownership table entry is unowned
6: COMPARE&SWAP(otable[index], 0, entry state) return . ownership acquired
7: else if LOCKED(o) then BACKOFF(); goto 4 . ownership table entry is locked, backoff and try again
8: else if TAG(o) != tag then . is there a tag mismatch?
9: LOCK ROW(index,o); HANDLE CHAIN(index, tag, trans, entry state); UNLOCK ROW(index) . repeat process on chain

10: else if OWNERS(o) = trans then . trans is the sole owner of this line
11: if STATE(o) != WRITE then . if trans already the only writer, do nothing
12: COMPARE&SWAP(otable[index], o, entry state) . if trans the only reader, become the only writer
13: else RESOLVE CONFLICT(index, trans, o); goto 4 . either stall or kill owners and wait until owners = 0
14: return

Algorithm 1: USTM WRITE BARRIER(trans, addr) checks the otable for conflicts, then, if none is found, acquires write ownership for
trans on addr. If any COMPARE&SWAP or LOCK ROW() fails, we repeat the algorithm from line 4.

5: if o = 0 then . ownership table entry is unowned
6: LOCK ROW(index, 0) . lock this otable row
7: SET UFO BITS(addr, READ |WRITE) . other threads should Fault-on Read and Fault-on Write
8: otable[index] = entry state . acquires ownership and releases lock
9: return . ownership acquired

Algorithm 2: Fragment of USTM WRITE BARRIER(trans, addr) showing how strong atomicity is conferred on USTM writes. Appropri-
ate UFO bits are set when otable entries are inserted.

// A hybrid transaction which first attempts to execute
// in BTM, but can fail over to USTM.
xact:
 BTM_BEGIN(&&fail);
 // transaction body
 BTM_END();
 goto cont;
fail:
 // Resolve faults if possible. If faults seem
 // resolved, goto xact; otherwise flow through
 BTM_ABORT_HANDLER(xact);
 USTM_BEGIN();
 // transaction body with ustm_reads and ustm_writes
 USTM_END();
cont:;

Figure 4. Hybrid TM code. If the transaction cannot succeed
in BTM, even after BTM’s abort handler is invoked, then it fails
over to USTM.

atomicity the same way as non-transactional code is.6 Notably, this
approach adds no execution overhead to hardware transactions —
the common case — even when concurrently executing with STM
transactions.

One undesirable interaction between UFO and BTM, resulting
from their mutual reliance on the underlying coherence protocol,
bears mentioning. As exclusive coherence permission is required
to set UFO bits (in order to keep them coherent), actions by the
STM can cause inflight BTM transactions to abort. As we discuss
in Section 4.4, we are not concerned when such an abort results
from a true conflict, because it is reasonable to prioritize the STM
transactions over the HTM transactions. Rather, the concern comes
from the potential for false conflicts between two transactions read-
ing the same line. USTM read barriers set the fault-on-write bit
for the line in question, which will kill BTM transactions that have
that block in their read set. Our results in Section 5.4 suggest that
this is not a substantial problem. Were this interaction to lead to a

6Unlike STM transactions, HTM transactions do not disable UFO faults.

significant loss of performance, it could be addressed by changing
the coherence protocol to permit setting UFO bits in the owner
state (as previously proposed [5]) or by lazily clearing UFO bits for
read-mostly data.

4.3.1. The BTM Abort Handler

When a BTM transaction fails, control is transferred to the abort
PC provided to the btm begin instruction. In our hybrid TM im-
plementations, this address vectors to an abort handler that decides
whether the transaction should be re-tried in BTM or should fail
over to the STM. This abort handler (Algorithm 3) tries to complete
as many transactions as possible in the HTM, while quickly failing
over to software for transactions that will end up completing there.
It manages these conflicting goals by using the reason that the trans-
action aborted to categorize it into one of three classes: transactions
likely to fail if tried again in hardware, transactions that should be
retried in hardware, and transactions that can be retried in hardware
after performing a software action.

Four conditions nearly guarantee that a transaction will abort
again if it is re-tried in hardware: cache overflow, system call in-
vocation, performing I/O, and incurring non-page fault exceptions.
These transactions are immediately failed over to software — that
is, re-tried as software transactions — as they represent the uncom-
mon cases for which we are relying on the increased capabilities of
the STM.

Some transactions are aborted due to conditions that are unlikely
to repeat. For example, most transactions aborted by interrupts will
complete when retried in hardware after the thread is re-scheduled.
Similarly, when a transaction is aborted due to contention with an-
other transaction, we generally want to retry the transaction in hard-
ware because the slower execution of software transactions will
tend to aggravate the contention. To mitigate contention, we im-
plement an exponential back-off scheme in the abort handler. As
indicated in Algorithm 3, our BTM implementation keeps track of
the number of aborts by interrupts and conflicts (counting up to 7 of

1: procedure BTM ABORT HANDLER(xact label)
2: abort reason← GET ABORT REASON()
3: if abort reason = HW CONFLICT then
4: if MULTIPLE CONFLICTS() then EXPONENTIAL BACKOFF()
5: goto xact label

6: if abort reason = INTERRUPT then
7: if MULTIPLE INTERRUPTS() then goto fallthrough
8: else goto xact label

9: if abort reason = SET OVERFLOW then goto fallthrough

10: if abort reason = PAGE FAULT then
11: FIX PAGE FAULT() ; goto xact label

12: if abort reason = EXCEPTION then
13: if FIX EXCEPTION() = EXCEPTION FIXED then
14: goto xact label

15: fallthrough:

Algorithm 3: BTM ABORT HANDLER(xact label), inlined at ev-
ery transaction, attempts to resolve any problems preventing suc-
cessful transaction completion in the HTM. Only if it unlikely that
the transaction will succeed will this routine fallthrough to execute
the STM version of the transaction.

each) since the last committed transaction, so that we can fail over
to software and invoke backoff appropriately.

Finally, two abort conditions cause repeatable failure of hard-
ware transactions, but can be addressed by the abort handler itself
before restarting the transaction: missing register exceptions and
page faults. The x86 ISA permits operating systems to lazily swap
in the floating point registers by tracking the presence of the FP/SSE
registers and raising an exception on their use when they are not
present. If the transaction was aborted due to an SSE device
not available exception (as is observed in the benchmark
kmeans), the abort handler executes an SSE nop, provoking the
fault, before retrying the transaction in hardware. In Algorithm 3,
this is performed in FIX EXCEPTION().

Similarly, when a transaction performs an access that generates
a page fault, the transaction is immediately aborted, leaving the
fault unhandled. The faulting address and access type, however, are
stored in a pair of transactional status registers. The abort handler
can perform an appropriate access to the faulting address,7 forcing
the fault to be handled outside of a transaction, before restarting the
transaction in hardware.

4.4. Contention Management in a Hybrid TM
As demonstrated by previous work [6, 17], how a TM system

responds to contention can have a first-order impact on how it per-
forms. While those works studied contention management in pure
HTM and pure STM contexts, respectively, our development of the
UFO hybrid TM has led us to study contention management in the
context of hybrid TMs. Following experimentation with several dif-
ferent policies, we have identified the following principles for han-
dling conflicts and deciding when to retry a transaction in the HTM
or the STM. We provide sensitivity results in Section 5.4 to support
these assertions.

First, there appears to be no substitute for having a good con-
tention management policy in hardware. As the need to implement
contention management as part of an HTM introduces hardware

7If a write, we first read the value then atomically update it to itself
using a compare-and-swap operation, repeating this process until the CAS
succeeds.

complexity, we explored naı̈ve hardware contention management
policies which guaranteed forward progress by eventually failing
over to the STM (where implementing contention management is
straightforward). We found, however, that in regions of high con-
tention such an approach often performed worse than the STM by
itself. In fact, we found that any significant simplification in the
HTM contention management policy yielded a first-order drop in
performance. The policy that we implemented, like LogTM [25],
uses transaction age in contention management. Unlike LogTM,
which implements “requester stalls” and uses transaction age to de-
tect deadlock causing cycles, we perform age-ordered conflict res-
olution for every request in the HTM: if the requester is older than
a block’s current owner, the block is taken and the current owner is
aborted. If the current owner is older, the requester is nacked and
requests again after 20 cycles.

Second, it is important to only execute a transaction in the STM
if doing so is required. In particular, contention should not be a
reason to fail over to software, because the STM’s overhead will
increase the transaction’s duration, thereby holding contended vari-
ables longer, increasing contention. Policies that retry conflict-
aborted HTM transactions as STM transactions are metastable; the
slightest bit of contention can cause a chain reaction that throws all
contending transactions into software.

Third, there is little potential benefit to dynamically prioritizing
STM transactions with respect to HTM transactions. As the STM
primarily runs long-running, large-footprint transactions (that have
already failed to execute in the HTM), they are generally older than
any hardware transactions they conflict with. In our experiments,
the STM transaction is older in more than 99% of such conflicts.
As a result, we statically prioritize STM transactions over HTM
transactions, which is also the simplest policy to implement.

5. Performance Analysis
In this section, we characterize the performance of the UFO hy-

brid TM, demonstrating that it is a compelling alternative to previ-
ously proposed hybrid TMs and that it achieves performance com-
parable to pure (unbounded) HTM systems, which must guarantee
the forward progress of all transactions in hardware. Specifically,
our experiments compare the UFO hybrid to an unbounded HTM,
three STMs, and two previously proposed hybrid TMs which we
describe below: HyTM and Phased TM (PhTM). To facilitate com-
parison between these TM schemes, wherever possible we use the
same building blocks: USTM (Section 4.1) and BTM (Section 3.1).

We give results from three STMs: USTM without strong atomic-
ity, USTM with UFO-based strong atomicity to show the overhead
of using memory protection for strong atomicity, and TL2, to link
our performance with previously published results [10, 24]. For all
but the unbounded HTM configurations, hardware transactions are
limited to those that can fit in the L1 data cache.

For the unbounded HTM system that we model, we use the BTM
model,8 except the memory footprint of a transaction is not limited.
In this way, our unbounded HTM is idealized with respect to ac-
tual pure HTM proposals (e.g., it can flash clear on an abort, where

8While the code for the unbounded HTM experiments does not include
STM-targeted versions of the transactions, it does include a simplified abort
handler necessary to make forward progress in the presence of page faults
and SSE device not available exceptions (as described in Sec-
tion 4.3.1).

LogTM uses a software rollback mechanism), meaning our results
for the unbounded case may be optimistic with respect to what is
implementable.

HyTM [9] addresses the challenge of detecting HTM/STM con-
flicts by burdening hardware transactions with the responsibility of
checking the STM metadata to ensure that they are not violating
the atomicity of STM transactions. The code of HyTM’s hardware
transactions are instrumented with read and write barriers, much
like its software transactions, but the code is substantially simpler.
The barriers perform the same otable lookup, but merely inspect
whether a conflicting record is present. If a conflicting record is
present, the transaction explicitly aborts and retries again in hard-
ware. The primary drawback of adding these checks is the execu-
tion overhead they introduce into the hardware transactions. In ad-
dition, our implementation, like the original [9], reads otable en-
tries transactionally, creating the potential for false conflicts when
unrelated STM accesses alias to the same otable rows previously
read by HTM transactions.9 Furthermore, these transactional reads
of the otable inflate HyTM’s transactional footprint, sometimes
yielding extra cache set overflows.

PhTM [19] avoids instrumenting hardware transactions by pre-
cluding HTM and STM transactions from executing concurrently.
The system maintains a counter of the number of STM transactions
currently executing, which is read at the beginning of each HTM
transaction. If the counter is non-zero when read or is updated dur-
ing the HTM transaction’s execution, the HTM transaction aborts.
The major drawback of this approach is that if one hardware trans-
action has to fail over to software, it takes the rest of the concurrent
hardware transactions — even those which could have completed in
hardware — with it. To prevent an STM phase from lasting perpetu-
ally, PhTM maintains a second counter which tracks the number of
running transactions that failed over to software due to a condition
the HTM does not support (e.g., cache overflow, exception). As
long as this second counter is non-zero, any new transaction will
commence in the STM. When this second counter reaches zero,
PhTM starts the shift back to an HTM phase by stalling transac-
tions rather than starting them in the STM. When the first counter
reaches zero, the last STM transaction has completed, and the wait-
ing transactions can commence as HTM transactions.

5.1. Experimental Method
In our experiments, we model the hardware in an x86 full-

system, timing-first [22], execution-driven simulator, built using
Virtutech Simics [20] and incorporating the x86 instruction decoder
from PTLsim [39] and the Ruby MOESI-directory memory sys-
tem [21]. The simulated system includes a modified Linux kernel
that provides support for saving and restoring UFO bits when phys-
ical memory pages are swapped to and from disk. The details of the
simulated system are provided in Table 4.

We used the STAMP benchmark suite [24], which consists of
three programs that exhibit a diversity of transaction construction
and interaction. kmeans implements a clustering algorithm and
consists largely of small transactions. vacation is a reservation-
scheduling system that includes large, long-running transactions
that sometimes overflow the cache. genome is a gene sequenc-
ing application whose transactions periodically overflow the cache

9Such false conflicts could be eliminated by extending BTM to support
non-transactional loads for use by the barrier code.

Processor frequency 4.0 GHz
Fetch/Decode width 3 x86-instructions
Rename/Issue/Retire width 4/4/4
Instruction window size 128
Branch predictor 4K gshare, 8-bit history
Indirect target predictor 256-entry BTB, 32-entry RAS
L1 Data Cache 64 KB, 8-way, 3 cycle hit
L2 Unified Cache 512 KB, 8-way, 11 cycle hit
L1 Cache Line size 64-bytes
L2 Cache Line size 64-bytes
Physical memory 512 MB, 100 cycle latency
Coherence protocol MOESI directory
Operating system Red Hat Enterprise Linux 4
Linux kernel Modified 2.6.23.9 kernel
USTM otable size 65,536 entries

Table 4. Simulation parameters

and exhibit significant contention at a central bottleneck. As in pre-
vious work [24], we show data for both high- and low-contention
configurations of kmeans and vacation.

5.2. Results

Our performance results are shown in Figure 5, plotted as
speedups relative to sequential execution. We find that even when
some transactions overflow to software, the UFO hybrid can achieve
performance close to that of an unbounded HTM solution while re-
taining the ability to fall back to an STM for cases that hardware
designers choose not to handle. In addition, we observe that the
UFO hybrid consistently outperforms (or performs equally well as)
both the HyTM and PhTM hybrids. Figure 6 shows the reasons
that hardware transactions aborted in the benchmarks.10 Finally, it
can be seen that making USTM strongly atomic (via adding UFO
bit operations) adds little overhead to the baseline USTM, which
performs similarly to TL2 [10] in all but kmeans. In kmeans we
observe that the winner of a transactional conflict frequently has to
stall a non-trivial amount of time because our current USTM im-
plementation relies on aborted transactions to recognize (as part of
STM barriers) that they have been killed and release their otable
entries and that in kmeans transactions execute for long periods
without STM barriers. We believe that our ongoing work to make
USTM non-blocking will address this effect.

As noted previously, kmeans gives hybrids few reasons for
transactions to fail over to software. Almost all of the aborts in
kmeans are due to contention or other recoverable reasons. As a
result, performance of all of the hybrids closely parallels that of un-
bounded hardware in both the high- and low-contention runs be-
cause almost all transactions commit in hardware. Specifically,
there is less than a 1% difference in performance between un-
bounded HTM, the UFO hybrid, and PhTM. The barriers in HyTM
cause its performance to lag the rest by 10-20%; in kmeans the
barrier overhead is small because of its low density of STM barri-
ers.

In contrast, vacation presents a significant challenge for hy-
brid TMs, since it consists of long-running, large-memory-footprint
transactions. The hybrid TMs actually perform better in the high-
contention case because the low-contention version has more trans-

10STAMP benchmarks feature no explicit aborts, so any aborts seen in
Figure 6 are due to the operation of PhTM and HyTM.

0

4

8

12

16

1p 2p 4p 8p 16p 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p

UFO Hybrid Unbounded HTM HyTM Hybrid PhTM Hybrid USTM (SA) USTM TL2

kmeans high contention

S
p

e
e

d
u

p
 v

s
.

S
e

q
u

e
n

ti
a

l

kmeans low contention genome vacation high contention vacation low contention

Figure 5. STAMP Performance of several TM schemes. Performance is normalized to that of sequential execution. USTM (SA) is
USTM with strong atomicity via UFO enabled.

0

125

250

375

500

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

(c) vacation, low contention

2p 4p 8p 16p

0

50

100

150

200

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

(b) vacation, high contention

2p 4p 8p 16p

0

200

400

600

800

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

(d) genome

2p 4p 8p 16p

0

150

300

450

600

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

U
n

b
o

u
n

d
e
d

 H
T

M

U
F

O
 H

y
b

ri
d

P
h

T
M

 H
y
b

ri
d

H
y
T

M
 H

y
b

ri
d

(a) kmeans, low contention

2p 4p 8p 16p

H
W

 T
ra

n
s
a

c
ti

o
n

 A
b

o
rt

s

1076 1415

37053

889175666064196821691108465256

Explicit Abort / UFO Bitset Recoverable Set Overflow Conflicts NonT Conflicts

Figure 6. Hardware Abort Reasons. Explicit aborts only occur in PhTM and HyTM, and UFO bit sets only occur in the UFO hybrid,
so they are shown with the same bar. Recoverable aborts include interrupts, page faults, and SSE device not available
exceptions. NonTransactional conflicts result from STM writes to data held by hardware transactions. kmeans high contention (not
shown) is qualitatively similar to kmeans low contention.

actions that overflow the cache.11 The effects of a non-trivial num-
ber of large transactions failing over to software can be seen in Fig-
ure 6c: the UFO hybrid incurs more transactions killed by UFO
bit sets (re-tried in hardware); HyTM receives more nonT conflicts
on previously-read otable entries, as described earlier in this sec-
tion; and PhTM generates more explicit aborts (due to trying to start
hardware transactions while software transactions are in-flight) and
nonT conflicts (on the software-transactions-in-flight counter, due
to software transactions starting while hardware transactions are in-
flight). This propensity to overflow the cache, combined with the
long-running nature of vacation’s transactions (which run still
longer in software) particularly affects PhTM, whose performance
actually begins to degrade as the number of threads (and therefore
the chance that one of them is running a software transaction) in-
creases, as shown in Figure 5.

The performance variation seen among the hybrids in
vacation low contention is largely due to the set overflows;
when the transactional cache is made sufficiently large to hold
all vacation low contention’s transactions, the hybrids perform
(relative to the unbounded HTM) almost exactly as they do for

11The benchmark configuration dictates what fraction of a fixed-sized
database is accessed, with low contention accessing more of the database,
leading to larger working sets.

vacation high contention. However, only the UFO hybrid is ca-
pable of simultaneously deploying no-overhead hardware transac-
tions while permitting only those transactions that really need to fail
over to software to do so. This ability gives it a marked advantage.

The larger working set of vacation also reveals another
weakness of HyTM: in Figure 6c, we see that HyTM suffers a
notably greater number of cache set overflows than the other hy-
brids. This effect is due to accessed otable entries competing
with the transaction’s data for space in the transactional cache.
These otable accesses do not only result in additional cache over-
flows, but also drastically increase the number of nonT conflicts that
abort hardware transactions, both of which negatively impact per-
formance (as seen in Figure 5.) Furthermore, the longer-running
HyTM hardware transactions tend to run into timer interrupts more
often, yielding a greater number of recoverable aborts as well.

genome exhibits a high-contention initialization phase, in
which elements are inserted in sorted order into a shared linked list
— a data structure not well suited for concurrent writes by transac-
tions. While the code could be modified to alleviate this contention,
it serves as a challenging test case for TM implementations. When
a transaction writes the list, it kills any transactions (which are nec-
essarily younger because we resolve conflicts with age ordering)
that have read the written part of the list. It is this type of code

0
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

5
5

%

6
0

%

6
5

%

7
0

%

7
5

%

8
0

%

8
5

%

9
0

%

9
5

%

1
0

0
%

HTM-Only UFO Hybrid HyTM Hybrid PhTM Hybrid: 1p
PhTM Hybrid: 2p PhTM Hybrid: 4p PhTM Hybrid: 8p STM-Only

R
u

n
ti
m

e
 v

s
.

H
T

M
-O

n
ly

 a
t

0
%

 S
o

ft
w

a
re

 F
a
ilo

v
e
r

100%

110%

120%

130%

140%

150%

UFO HyTM PhTM

(a) Software Failover Limit Study (b) Hybrid Overhead at 0% Failover

Figure 7: Software Failover Limit, in (a), compares the hybrid proposals listed in Section 5. PhTM, whose
performance varies with the number of processors, has a curve for each of 1p, 2p, 4p, and 8p; for HyTM and
the UFO hybrid we plot only the 8p runs as their behavior doesn’t vary with processor count. Parallel runtime
(y-axis) is normalized to HTM-only execution as software failover rate (x-axis) is varied from 0-100%. STM data
are provided for reference. (b) shows runtime overhead, compared to HTM-only execution, of UFO, PhTM, and
HyTM hybrids.

must perform an otable lookup for every access to transactional data, experiences significant overhead. In this

way the UFO hybrid exhibits our pay-per-use principle, where the overhead of supporting STM transactions

is only paid by those transactions that require the STM. The UFO hybrid, however, introduces overhead into

its software transactions in the form of the UFO bit operations introduced in Section 3.2, resulting in greater

slope than HyTM, making it underperform HyTM for software failover rates exceeding 45%. If maximizing the

performance of such workloads were important, we could consider dynamically switching between the UFO hybrid

and HyTM, but doing so would sacrifice the strong atomicity semantic that the UFO hybrid provides.

6 Conclusion

We have described an implementation of transactional memory which we believe is compelling. Our proposed

system, the UFO hybrid TM, is comprised of two hardware primitives of modest complexity which have broad

applicability beyond TM, provides a clean TM programming model with strong atomicity, and achieves perfor-

mance rivaling an unbounded HTM across a broad set of workloads, without the challenges of having to guarantee

completion of all transactions in hardware. In addition, since the semantics of the TM are not architected in

hardware, this approach is viable even in the presence of the current TM bootstrapping problem: without signif-

icant transactional application development, it is difficult know what features a useful TM programming model

requires, but few – if any – programmers will be willing to do significant development until TM performs accept-

ably (that is, better than STMs). The hybrid approach permits evolution of the TM semantics via the STM’s

19

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

HTM-Only UFO Hybrid HyTM Hybrid PhTM Hybrid: 1p
PhTM Hybrid: 2p PhTM Hybrid: 4p PhTM Hybrid: 8p STM-Only

Runtime vs. HTM-Only at 0% Software Failover

100%

110%

120%

130%

140%

150%

UFO HyTM PhTM

(a) Software Failover Limit Study (b) Hybrid Overhead at 0% Failover

Figure 7: Software Failover Limit, in (a), compares the hybrid proposals listed in Section 5. PhTM, whose
performance varies with the number of processors, has a curve for each of 1p, 2p, 4p, and 8p; for HyTM and
the UFO hybrid we plot only the 8p runs as their behavior doesn’t vary with processor count. Parallel runtime
(y-axis) is normalized to HTM-only execution as software failover rate (x-axis) is varied from 0-100%. STM data
are provided for reference. (b) shows runtime overhead, compared to HTM-only execution, of UFO, PhTM, and
HyTM hybrids.

must perform an otable lookup for every access to transactional data, experiences significant overhead. In this

way the UFO hybrid exhibits our pay-per-use principle, where the overhead of supporting STM transactions

is only paid by those transactions that require the STM. The UFO hybrid, however, introduces overhead into

its software transactions in the form of the UFO bit operations introduced in Section 3.2, resulting in greater

slope than HyTM, making it underperform HyTM for software failover rates exceeding 45%. If maximizing the

performance of such workloads were important, we could consider dynamically switching between the UFO hybrid

and HyTM, but doing so would sacrifice the strong atomicity semantic that the UFO hybrid provides.

6 Conclusion

We have described an implementation of transactional memory which we believe is compelling. Our proposed

system, the UFO hybrid TM, is comprised of two hardware primitives of modest complexity which have broad

applicability beyond TM, provides a clean TM programming model with strong atomicity, and achieves perfor-

mance rivaling an unbounded HTM across a broad set of workloads, without the challenges of having to guarantee

completion of all transactions in hardware. In addition, since the semantics of the TM are not architected in

hardware, this approach is viable even in the presence of the current TM bootstrapping problem: without signif-

icant transactional application development, it is difficult know what features a useful TM programming model

requires, but few – if any – programmers will be willing to do significant development until TM performs accept-

ably (that is, better than STMs). The hybrid approach permits evolution of the TM semantics via the STM’s

19

0% 1%Software Failover Rate

Ru
nt

im
e

vs
. H

TM
-O

nl
y

(a) Software Failover Limit Study (b) Hybrid Overhead at Low Failover

0
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

5
5

%

6
0

%

6
5

%

7
0

%

7
5

%

8
0

%

8
5

%

9
0

%

9
5

%

1
0

0
%

Unbounded HTM UFO Avg HyTM Avg PhTM 1p PhTM 2p
PhTM 4p PhTM 8p PhTM 16p USTM (SA) USTM

STM

Performance

HTM

Performance

Software Failover Rate

Figure 7. Software Failover Limit, in (a), compares the hybrid proposals listed in Section 5. PhTM, whose performance varies with
the number of processors, has a curve for each of 1p, 2p, 4p, 8p, and 16p; for HyTM and the UFO hybrid we plot only the 8p runs as
their behavior doesn’t vary with processor count. Parallel runtime (y-axis) is normalized to HTM-only execution as software failover rate
(x-axis) is varied from 0-100%. STM data are provided for reference. (b) zooms into (a) at low software failover rates.

that requires that a TM has robust contention management so that
forward progress and scalability are ensured, as we discuss in Sec-
tion 5.4. As relatively few transactions fail over to software, PhTM
and the UFO hybrid are able to give performance comparable to the
unbounded HTM.

5.3. Software Failover
We find that the performance of the hybrid TMs is a complex in-

teraction involving contention and the fraction of transactions that
must execute in software. In real programs, these variables are
related, as having a transaction fail over to software typically in-
creases the amount of contention. In an attempt to isolate the impact
of software failover rate, we constructed a microbenchmark where
the transactions result in no conflicts, but randomly fail over to soft-
ware at a prescribed rate. We show the results of this microbench-
mark in Figure 7 as a function of the failover rate, compared to pure
HTM and pure STM approaches.

Clearly, for every hybrid, an increasing software failover rate re-
sults in decreasing performance – or, more precisely, as more trans-
actions are forced to software, performance becomes more like a
pure STM. However, the rate at which performance decreases dif-
fers between the hybrid proposals. UFO Hybrid and HyTM vary
almost linearly between pure HTM and pure STM performance,
executing only as many transactions in software as were randomly
failed over, but PhTM must execute not only those transactions in
software, but also any other concurrent transactions in software,
even if they could have completed in hardware. This behavior wors-
ens with increased processor count, with increased likelihood that
at least one transaction needs to execute in the STM, as was seen in
vacation in Figure 5.

While all of the hybrids approach pure HTM performance at low
failover rates, Figure 7b shows that there are performance differ-
ences. At 0% failover, the UFO hybrid performs equivalently with
the pure HTM; the observed 6% overhead is due to additional code
in all of the hybrid TMs that force the software failovers. PhTM in-
curs an additional 2% overhead from checking the counter of STM
transactions. HyTM’s overhead is even higher, due to the otable

0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

requester

wins

failover on

5th conflict

stall vs.

abort

no UFO false

conflicts

1.01

.51

.90 .96

UFO hybrid

baseline

USTM

Figure 8. Sensitivity Analysis Average results shown for 16
processor runs.

lookups it must perform. In this way, the UFO hybrid exhibits
our pay-per-use principle, where the overhead of supporting STM
transactions is only paid by those transactions that execute in the
STM. The UFO hybrid, however, introduces overhead (not present
in HyTM and PhTM) into its software transactions to set and clear
the UFO bits. As a result the UFO hybrid’s curve has a greater slope
than HyTM, making it underperform HyTM for software failover
rates exceeding 45%, but it is unclear whether the performance of
workloads with such high failover rates is important.

5.4. Sensitivity Analysis
In the development of the policies described in Section 4.4, ran

a number of experiments exploring alternative policies, which we
attempt to summarize here. Our most important result is how per-
formance tanked whenever we used a low quality hardware con-
tention management policy. For example, the performance of a
simple “requestor wins” policy (1st bar in Figure 8) is result of
STM-like performance in high contention regions. Also, such poli-
cies required failing over to the STM after a number (e.g., 5) of
contention-induced aborts to avoid live-lock.

Second, presuming we had a strong hardware contention man-
agement policy, we found that performance was better if conflicts
never caused a fail-over to software compared to failing-over on the
nth abort (2nd bar). We found this effect could be partially miti-
gated by preventing hardware transactions from aborting unless ab-

solutely necessary (3rd bar) — for example, we tried having BTM
transactions stall instead of abort on UFO faults resulting from con-
flicts with STM transactions — but this is not necessary when con-
tention never causes a fail-over. Finally, we include results for a
limit study where UFO bit sets only abort BTM transactions when
they represent a true conflict that shows that there is little lost per-
formance due to false conflicts (4th bar).

6. Concluding Remarks
We have described an implementation of transactional memory

which we believe is compelling. Our proposed system, the UFO hy-
brid TM, is comprised of two hardware primitives of modest com-
plexity which have broad applicability beyond TM, provides a clean
TM programming model with strong atomicity, and achieves per-
formance rivaling an unbounded HTM across a broad set of work-
loads, without the challenges of having to guarantee completion of
all transactions in hardware. In addition, since the semantics of the
TM are not architected in hardware, this approach is viable even
in the presence of the current TM bootstrapping problem: without
significant transactional application development, it is difficult to
know what features a useful TM programming model requires, but
few – if any – programmers will be willing to do significant devel-
opment until TM performs acceptably (that is, better than STMs).
The hybrid approach permits evolution of the TM semantics via the
STM’s extensibility while preserving near-hardware performance.

As part of the development of the UFO hybrid, we have been
extending its programming model to support system calls, I/O,
and transactional waiting. Idempotent system calls (e.g., sbrk,
gettimeofday) are already trivially supported by failing over to
the STM. We use this support to handle malloc in transactions; a
feat achieved much less gracefully in our unbounded HTM by intro-
ducing complexity into its abort handler. By further adding support
for deferring, “going non-speculative”, and compensation code the
vast majority of side-effecting operations exhibited in real code can
be supported [3]. Such extensions are straightforward because they
only require modification of the STM.

Adding support for the transactional waiting primitive
retry [15] is more challenging because of its required interac-
tion with HTM transactions. A transaction which determines, based
on transactionally-read data, that conditions prevent its forward
progress may issue the retry command. This action undoes the
transaction’s speculative writes, converts all its held otable en-
tries to transactionally-read, and changes its state to retrying. The
transaction may then deschedule itself. When a later transaction,
while committing, updates a value that the retrying transaction had
read, it awakens the retrying transaction, which releases its remain-
ing otable entries and restarts as if after an abort. Such support
is included in the STM in our nascent implementation of retry in
the UFO hybrid.

The HTM component of retry can be implemented using ex-
isting features of BTM and UFO. First, when the compiler gen-
erates the HTM version of the code, it translates retry into an
explicit abort, causing transactions reaching that point to failover
to software. Second, an HTM can detect that it is conflicting with
a retrying transaction by inspecting the otable in the user-mode
UFO fault handler (executed while in BTM), and the ID of the other
transaction can be recorded so that it can be awakened after the
BTM commit. The transaction can then clear the UFO bit, rely-

ing on the fact that this update will not be visible until its commit
and will be discarded if it aborts. Seeing how naturally our prim-
itives enabled integrating retry into the UFO hybrid makes us
cautiously optimistic that the UFO hybrid approach provides the
necessary extensibility to support a broad range of TM features.

7. Acknowledgments
This research was supported in part by NSF CAREER award

CCR-03047260, NSF CNS-0615372, and a gift from the Intel cor-
poration. We would like to thank Ravi Rajwar and Konrad Lai for
productive discussions relating to this work.

References
[1] C. S. Ananian et al., “Unbounded Transactional Memory,” in HPCA-

XI, Feb. 2005.
[2] A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection

on stock multiprocessors,” in ACM SIGPLAN, June 1988.
[3] L. Baugh and C. Zilles, “An Analysis of I/O and Syscalls in Crit-

ical Sections and Their Implications for Transactional Memory,” in
TRANSACT-II, Aug. 2007.

[4] C. Blundell et al., “Subtleties of Transactional Memory Atomicity Se-
mantics,” Computer Architecture Letters, vol. 5, Nov. 2006.

[5] C. Blundell et al., “Making the Fast Case Common and the Uncom-
mon Case Simple in Unbounded Transactional Memory,” SIGARCH
Comput. Archit. News, vol. 35, no. 2, 2007.

[6] J. Bobba et al., “Performance Pathologies in Hardware Transactional
Memory,” in ISCA-34, Jun 2007.

[7] L. Ceze et al., “BulkSC: Bulk Enforcement of Sequential Consis-
tency,” in ISCA-34, June 2007.

[8] W. Chuang et al., “Unbounded Page-Based Transactional Memory,”
in ASPLOS-XII, Oct. 2006.

[9] P. Damron et al., “Hybrid Transactional Memory,” SIGOPS Oper. Syst.
Rev., vol. 40, no. 5, 2006.

[10] D. Dice, O. Shalev, , and N. Shavit, “Transactional Locking II,” in
Proc. of the 20th International Symposium on Distributed Computing
(DISC 2006), 2006.

[11] M. Franklin and G. S. Sohi, “The expandable split window paradigm
for exploiting fine-grain parallelism,” in ISCA-19, May 1992.

[12] L. Gwennap, “Alpha 21364 to Ease Memory Bottleneck,” in Micro-
processor Report, Oct. 1998.

[13] L. Hammond et al., “Transactional Memory Coherence and Consis-
tency,” in ISCA-31, June 2004.

[14] T. Harris, “What does ‘atomic’ mean?.” Presentation.
[15] T. Harris et al., “Composable Memory Transactions,” in PPOPP,

2005.
[16] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural

Support for Lock-Free Data Structures,” in ISCA-20, May 1993.
[17] W. N. S. III and M. L. Scott, “Advanced Contention Management for

Dynamic Software Transactional Memory,” in PODC-XXIV, 2005.
[18] J. R. Larus and R. Rajwar, Transactional Memory. Dec. 2006.
[19] Y. Lev, M. Moir, and D. Nussbaum, “PhTM: Phased Transactional

Memory,” in TRANSACT-II, Aug. 2007.
[20] P. S. Magnusson et al., “Simics: A full system simulation platform,”

IEEE Computer, vol. 35, Feb. 2002.
[21] M. M. Martin et al., “Multifacet’s General Execution-driven Multi-

processor Simulator (GEMS) Toolset,” Computer Architecture News
(CAN), Sept. 2005.

[22] C. J. Mauer et al., “Full system timing-first simulation,” in
SIGMETRICS-02, June 2002.

[23] A. McDonald et al., “Architectural Semantics for Practical Transac-
tional Memory,” in ISCA-33, June 2006.

[24] C. C. Minh et al., “An Effective Hybrid Transactional Memory System
with Strong Isolation Guarantees,” in ISCA-34, June 2007.

[25] K. E. Moore et al., “LogTM: Log-based Transactional Memory,” in
HPCA-XII, Feb. 2006.

[26] M. J. Moravan et al., “Supporting nested transactional memory in
LogTM,” SIGOPS Oper. Syst. Rev., vol. 40, no. 5, 2006.

[27] N. Neelakantam et al., “Hardware Atomicity for Reliable Software
Speculation,” in ISCA-34, June 2007.

[28] R. Rajwar and J. R. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” in MICRO-34, Dec.
2001.

[29] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Mem-
ory,” in ISCA-32, June 2005.

[30] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using speculative retire-
ment and larger instruction windows to narrow the performance gap
between memory consistency models,” in SPAA-IX, June 1997.

[31] C. J. Rossbach et al., “TxLinux: Using and Managing Transactional
Memory in an Operating System,” in SOSP-XXI, Oct. 2007.

[32] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and
D. A. Wood, “Fine-grain access control for distributed shared mem-
ory,” in ASPLOS-VI, Oct. 1994.

[33] M. L. Scott et al., “Transactions and Privatization in Delaunay Trian-
gulation,” in PODC-XVI, 2007.

[34] A. Shankar et al., “Runtime Specialization with Optimistic Heap Anal-
ysis,” in OOPSLA 2005, 2005.

[35] T. Shpeisman et al., “Enforcing Isolation and Ordering in STM,” in
PLDI ’07, June 2007.

[36] T. F. Wenisch et al., “Mechanisms for Store-Wait-Free Multiproces-
sors,” in ISCA-34, June 2007.

[37] E. Witchel et al., “Mondrian Memory Protection,” in ASPLOS-X, Oct
2002.

[38] W. A. Wulf, “Compilers and Computer Architecture,” IEEE Com-
puter, vol. 14, no. 7, 1981.

[39] M. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchi-
tectural simulator,” in ISPASS ’07, Apr. 2007.

[40] P. Zhou et al., “iWatcher: Efficient Architectural Support for Software
Debugging ,” in ASPLOS-VI, Oct. 1994.

Appendix A. UFO Implementation Details
While the implementation of UFO is not the focus of this pa-

per, understanding its implementation is potentially important to
interpreting the paper’s results. To this end, we provide a detailed
description of the UFO implementation assumed in this work.

Fundamentally, the UFO implementation maintains two bits of
protection information for every cache block of data, extending all
levels of the virtual memory hierarchy, as shown in Figure 9. Our
implementation of UFO augments the hardware in three places: the
cache hierarchy, the memory controller, and the execution core.

The UFO bits travel with the data throughout the cache hierar-
chy. In the caches, each line is extended with one UFO read and
one UFO write bit; even with SMT and shared caches, only a sin-
gle copy of the bits is required per cache line. The existing cache
coherence protocol is used to ensure that all threads or processors
observe a consistent state of the UFO bits.

UFO bits are also present at a cache-line granularity in phys-
ical memory. These bits may be explicitly architected in DRAM
chips or stored in a separate memory module, but we propose re-
purposing some ECC bits by encoding ECC at a larger granular-
ity, as was done to provide storage for the Alpha 21364’s direc-
tory [12]. Given the increasing susceptibility to single-event upsets
with decreasing feature size, it is likely that ECC will be pervasive
throughout future systems. In this case, the only hardware change
required to provide storage for UFO bits throughout physical mem-
ory is an amendment to the memory controller, permitting it to re-
encode ECC at a coarser granularity and to store and retrieve UFO
bits in the reclaimed bits.

DATA TAG R WD V
DATA TAG R WD V

PAGE IN

PAGE OUT

PAGE DATA

UF
OVIRTUAL

MEMORY

MAIN
MEMORY EC

CPHYSICAL
MEMORY

MEMORY
CONTROLLER

CACHE

UFO

DATA TAG R WD V

STATUS

Figure 9. The Memory Hierarchy with UFO support.
Shaded regions are added or altered to support UFO. In the
cache, each line is augmented with Read and Write Protection
bits. In the memory controller, ECC is encoded at a coarser
granularity, and UFO bits are stored in ECC. In the virtual mem-
ory system, swapped-out pages are stored with (possibly com-
pressed) UFO data.

As physical pages are swapped to and from disk, the operating
system is responsible for saving and restoring the UFO bits. We
modified the Linux 2.6.23.9 kernel to allocate an array with one 16-
byte element per swap-file location (much like the swap map), to
save the UFO bits when a page is swapped to disk, to restore the
UFO bits when a page is swapped from disk, and to clear the bits
when a physical page is freed. Using real machine experiments, we
found the overhead of these changes to be negligible in workloads
where swapping normally occurs (e.g., a parallel kernel build with
512MB memory). Minor overhead was observed with intensive
page swapping (e.g., 8% additional overhead when the same ker-
nel build is thrashing from only having 64MB memory); the source
of this overhead is additional swapping induced by accesses to the
UFO-bit storage arrays. Much of this overhead is eliminated by op-
timizing the case in which no UFO bits have been set (and thus do
not need to be saved or restored) by maintaining an additional array
with a single bit per page indicating that the all the UFO bits in a
page are clear.

When an instruction accesses the cache, the UFO bit for the type
of the access is consulted (as part of the tag check) and recorded
in the instruction’s ROB entry, resulting in no additional overhead.
Immediately prior to the instruction’s retirement, this bit is checked;
if it is set, then a UFO fault is raised. To support weak consistency
models, stores can be speculatively retired into a store buffer before
the cache block is available, using one of the many previously pro-
posed techniques [7, 30, 36] to recover precise state if a UFO fault
is required.

The [set,add,read]_ufo_bits instructions are treated
by the pipeline like memory instructions. Both set_ufo_bits
and add_ufo_bits behave similarly to stores: they require ex-
clusive coherence permission to the cache line and must have write
access and update the page’s dirty bit in the TLB (to ensure that
UFO bits are swapped properly and the semantics of operations like
copy-on-write are maintained). The read_ufo_bits instruction
is performed speculatively (like normal loads) and must be inval-
idated based on coherence events as per the memory consistency
policy on the platform.

