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Abstract
In this work, we present accordion arrays, a straight-
forward and effective memory compression technique target-
ing Unicode-based character arrays. In many non-numeric
Java programs, character arrays represent a significant
fraction (30-40% on average) of the heap memory allocated.
In many locales, most, but not all, of those arrays consist en-
tirely of characters whose top bytes are zeros, and, hence,
can be stored as byte arrays without loss of information.

In order to get the almost factor of two compression rate
for character vectors, two challenges must be overcome: 1)
all code that reads and writes character vectors must dynam-
ically determine which kind of array is being accessed and
perform byte or character loads/stores as appropriate, and
2) compressed vectors must be dynamically inflated when
an incompressible character is written. We demonstrate how
these challenges can be overcome with minimal space and
execution time overhead, resulting in an average speedup of
2% across our benchmark suite, with individual speedups as
high as 8%.

Categories and Subject Descriptors D.3 [PROGRAM-
MING LANGUAGES]: Code generation

General Terms Performance

Keywords Array, Character, Compression, Java, Memory
Management, Polymorphism, Unicode

1. Introduction
With memory costs representing a significant fraction of
server costs, it is important to identify optimizations that
target memory efficiency. Using less memory has a number
of processor-observable advantages, including smaller data
working sets, which will fit better in caches and translation
look-aside buffers (TLBs), as well as lower memory system
bandwidth requirements. In addition, in garbage collected
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Figure 1. Accordion array compression. We can halve the
memory usage of Unicode character arrays that consist entirely of
characters whose top bytes are all 0’s by storing only the charac-
ters’ bottom bytes in a byte array.

languages, a reduction in the rate at which memory is al-
located reduces the frequency at which garbage collection
needs to be performed.

In this work, we focus on the memory usage resulting
from character arrays in managed languages; specifically, we
focus on Java. Character arrays represent an important target
for optimization because they can account for a significant
fraction of a program’s heap memory allocation; we find in
a suite of non-numeric Java programs character arrays are re-
sponsible for 30-40% of allocated heap memory on average.
One of the reasons for this large fraction is the use of 16-bit
characters. The use of 16-bit Unicode encodings (UCS-2)
for characters in modern languages facilitates international-
ization, because this standard encoding enables representing
most of the character sets in widespread use in the world. In
most of five continents, however, an 8-bit subset of Unicode
is sufficient to represent most text. In all of the Java pro-
grams we studied, we find that over 99% of character arrays
consist entirely of 8-bit characters.

While the benefits of using Unicode are unquestionable, it
generally represents a significant space inefficiency, one that
can be easily eliminated by compression. The compression
technique must however serve the usage model of how char-
acter arrays are accessed. Given that Java provides random
access to characters within a character array (through the
character load (caload) and store (castore) bytecodes), it
is important to provide the ability to efficiently index into
the middle of a compressed array and read/write a character.
This is not a property generally provided by a variable-length
encoding scheme (e.g., Huffman or UTF-8 encoding).



In this paper, we present the idea of accordion arrays,
a straight-forward and effective memory compression tech-
nique targeting Unicode character arrays in managed lan-
guages. In principle, the technique is quite simple: character
arrays consisting entirely of 8-bit characters are squeezed
(much like bellows of an accordion) so that they can be
stored in byte (8-bit) arrays (as shown in Figure 1). This en-
coding achieves a halving of memory allocated for the char-
acters and retains the ability to efficiently read and write ar-
bitrary characters in the vector: the nth character is stored at
an n byte offset from the beginning of the string and can be
read or written with byte load or store instructions, respec-
tively.

Because most character array objects are short lived, to
get a significant benefit from this compression, we need to
directly allocate arrays in compressed form. In general, how-
ever, we do not know until after allocation whether an array
will need to hold an incompressible (>255) character. Thus,
we must speculatively allocate arrays in compressed form.
If, after allocation, we discover that we need to write an in-
compressible character to a compressed array, we must first
inflate—in the same sense that a thin lock [4] is inflated—the
compressed array. Frequently this inflation can be performed
in place, as the array is frequently the most recently allocated
object, but, in rare circumstances, inflation must be accom-
plished by allocating a new uncompressed array. When this
is necessary, we must install within the original array a for-
warding pointer to the new array, to permit future accesses
to the original array to find the new copy

To benefit from compressible character arrays while
maintaining the ability to store arbitrary Unicode charac-
ters in any character array, all types of character arrays
(compressed, uncompressed, and inflated) must peace-
fully co-exist within the managed runtime. Because each
type of array requires a different sequence of instructions to
index into the array and load or store an element, any code
that accesses a character array has to dynamically dispatch
to the appropriate routine based on the type of the array
encountered. In effect, we are making the character array
primitive polymorphic.

This dynamic dispatch has the potential to add overhead
that would exceed any benefits resulting from improved
memory efficiency, but we find that efficient implementations—
those with negligible overhead on modern dynamically-
scheduled superscalar processors—of accordion arrays are
possible. There are three main factors that contribute to this
result:

1. Accesses to character arrays are disproportionately un-
common relative to the amount of heap memory allocated
to character arrays: while character arrays represent 30-
40% of heap memory allocated, access to them only ac-
count for only 1-3% of the bytecodes executed.

2. Dynamic dispatch branches are quite predictable and in-
flations are extremely rare. The branches are predictable

because they are highly biased—the overwhelming ma-
jority (>99%) of arrays are compressed—and there is lo-
cality (both in code location and time) in the accesses
to non-compressed arrays. In practice the number of in-
flations is much less than the number of uncompressed
arrays, because most of the uncompressed arrays are al-
located on behalf of Strings, whose content is known at
allocation time.

3. The extra instructions that dynamic dispatch adds are
almost entirely predictable branches and ALU opera-
tions that are off the program’s critical path. On mod-
ern dynamically-scheduled superscalar machines, these
instructions can often be executed on what would other-
wise be idle functional units, generally resulting in negli-
gible overhead.

With small execution overhead, the benefits of improved
memory efficiency and reduced garbage collection fre-
quency translate into a reduction of overall execution time
or an improvement of throughput. We find on a collection
of DaCapo benchmarks and SPECjbb2005, that accordion
arrays achieve an average speedup of 2%, with speedups of
5-8% for the most memory intensive programs.

This paper makes three contributions, each of which
makes up a major section in the paper:

1. We extensively characterize the usage of Unicode char-
acter arrays in representative non-numeric Java programs
(Section 2).

2. We describe the design and an implementation of accor-
dion arrays that is efficient in both space and time, detail-
ing its components in the code generator, run-time, and
garbage collector (Section 3).

3. We characterize and analyze the performance of accor-
dion arrays implemented in the Harmony DRLVM JVM
(Section 4).

In Sections 5 and 6, we discuss related work and con-
clude, respectively.

2. Motivation
In this section, we demonstrate that, in a number of Java pro-
grams, character (char) arrays are a significant fraction of
heap usage and very few of the Unicode characters in those
arrays require more than the (8-bit) ISO-8859-1 representa-
tion. We find that those arrays that do include full (16-bit)
Unicode characters are often allocated by a Java String con-
structor, but character arrays allocated by String constructors
represent only a small fraction of all char arrays allocated.
In addition, we find that a small number of non-String allo-
cated char arrays include 16-bit characters, but most of those
arrays are short lived.

The Heap is Dominated by Char Vectors: For many non-
numerical applications of the Java language, arrays of char-
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Figure 2. Fraction of Java heap usage attributed to character arrays. Data shown both for the average fraction of live heap at garbage
collections (live), and of all heap memory allocated (alloc).

acters represent a significant fraction of the program’s heap
memory usage. Figure 2 shows that char arrays represent 38
percent of the total heap memory allocated and 35 percent
of the average heap memory live at a garbage collection in
the DaCapo benchmark suite [5] and SPECjbb2005. Char
arrays are responsible for the most heap allocation of any
single type in all of the benchmarks except three (jython,
pmd, and luindex), representing more than half of the heap
allocation in four benchmarks. At a garbage collection, char
arrays are responsible for the most live heap memory of any
single type in all benchmarks except one (hsqldb). When it
comes to heap memory allocation, char vectors are a, if not
the, common case.

The Prevalence of ISO-8859-1 in Unicode: To support
internationalization, Java uses 16-bit Unicode as the na-
tive representation for its Strings and, therefore, its char-
acter arrays. As Unicode was developed significantly after
Western-centric character coding schemes (e.g., ASCII and
ISO-8859-1), Unicode designers chose to make Unicode a
super-set of these coding schemes to facilitate adoption. Uni-
code’s first 256 encodings are identical to those of the 8-bit
ISO-8859-1, which consist of the 7-bit ASCII encodings ex-
tended to include most characters necessary for representing
any Latin-alphabet text. As a result, these 8-bit encodings are
sufficient for storing much of the text found in the Americas,
Western Europe, Oceania, and much of Africa.

As such, it should not be surprising that for many Java
executions, char arrays are predominantly populated with
character values of 255 or less. In all of the benchmarks
we evaluated, char arrays that included characters outside
the ISO-8859-1 encodings represented 1% or less of heap
memory used by char arrays, as shown in Figure 3(a). In
general, we find that an array either has no 16-bit characters
or has many of them.

Thus, if we can allocate the ISO-8859-1 char arrays into
byte arrays rather than short (16-bit) arrays, we can approx-
imately halve the heap memory allocation from char arrays.
This, in turn, will result in a 20% reduction (on average) in
overall heap memory allocation rate (in MB per bytecode
executed), with as much as a 30-40% reduction in four of
the 10 benchmarks.

Characterizing the Arrays with Full (16-bit) Unicode
Characters: Most character arrays are allocated either as
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Figure 3. Incompressible character arrays are uncommon.
Fraction of character arrays containing incompressible characters;
data shown for both number and size of the arrays. String construc-
tors are responsible for the majority of incompressible characters.
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Figure 4. Most character arrays are allocated by the standard
newarray allocation path While String constructors are responsi-
ble for the majority of incompressible arrays, they are responsible
for only a fraction of the character arrays allocated overall, mean-
ing that it is important to compress non-String constructor-allocated
character arrays. Data shown for both number and size of the ar-
rays.

part of Java String objects, which contain a reference to an
immutable character array, or in the process of their con-
struction. There are, however, four ways in which character
arrays are allocated and they have significantly different be-
haviors with respect to allocating incompressible characters,
as shown in Figure 3.

One important path is in the String object constructor
(when a character array cannot be shared with another ex-
isting object), which account for a disproportionate fraction
of the incompressible arrays. While String constructors ac-
count for about 10% of the character arrays allocated (less
than 5% of the space), they are the source for more than half
of the incompressible character arrays. That String construc-
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Figure 5. Java object layouts. a) 8-byte object header that is part of all objects in Harmony, b) an array object in Harmony that includes
an array length field followed by the array data, c) a byte array object.

tors are the predominant source of 16-bit characters is desir-
able, because a String’s contents are available at the time the
char array is allocated (provided as a UTF-8 or Unicode ar-
ray passed into the String’s constructor). By inspecting the
String’s intended contents, we can know at allocation time
whether the char array will contain 16-bit characters and
allocate the array appropriately. Furthermore, because Java
Strings are immutable, we know that the program will never
introduce a 16-bit character into an array that previously did
not contain one.

The second important path for character allocation is
the generic heap allocation path, which is the most im-
portant from the perspective of getting benefit from com-
pression. This allocation path is the one used to implement
Java bytecode newarray, which results from common us-
age of StringBuffer and StringBuilder. It is respon-
sible for the majority of character array memory allocation
in all benchmarks, accounting for more than 95% in seven
of the ten (as shown in Figure 4). In contrast to Strings,
when char arrays are allocated by the generic array alloca-
tor, we cannot, in general, know whether it will be used to
hold an incompressible character. For the programs consid-
ered, a very small fraction (less than 0.1%), of the char ar-
rays will need to hold 16-bit characters, which will require
us to inflate—dynamically reallocate so they can support 16-
bit characters—those arrays. At the end of this section, we
include a brief characterization of those arrays that require
inflation.

The third and final important character allocation path is
the through the clone method that character arrays inherit
from the Java base type, Object. This path accounts for
a substantial fraction of allocations only in the benchmark
fop and allocates no arrays with incompressible characters
in our benchmarks. Nevertheless, the clone method has an
advantage similar to String allocation in deciding whether
a compressed or uncompressed array should be allocated.
Specifically, we can look at the type of the array that we are
cloning and allocate an array of that type. A fourth allocation
path, through the Java Native Interface (JNI), exists but was
not exercised by our benchmarks.

3. Design and Implementation
In this section, we describe the changes necessary to imple-
ment accordion arrays in a Java virtual machine. For clar-
ity of exposition, when discussing issues that depend on the
specifics of a particular JVM implementation, we will fo-
cus on the implementation in the 32-bit x86 version of the
Apache Harmony Dynamic Runtime Layer Virtual Machine
(DRLVM) [10], to which we will refer simply as Harmony.
We begin this section providing some background details on
the implementation of Java and Harmony in Section 3.1. We
then describe the high-level design of accordion arrays in
Section 3.2. Then, we describe the changes made in each
of the memory allocator (Section 3.3), code generator (3.4),
garbage collector (3.6), and other virtual machine functions
(3.7).

3.1 Background
In Java, the fundamental unit of data structure is the object.
Every object includes a (JVM-specific) object header that
generally contains: i) a pointer to a virtual function dispatch
table (vtable), and ii) an object info (obj info) field used
internally by the JVM for synchronization, garbage collec-
tion, and tracking object hashes. In Harmony each of these
fields is 4B large (as shown in Figure 5(a)). In addition to
synchronization, Harmony uses the obj info field to store
relocation information during garbage collection (GC). The
rest of an object’s fields are placed in memory after the ob-
ject header (i.e., starting 8B from the beginning of the ob-
ject). Object sizes in Harmony are rounded up to the closest
4B for reasons of memory alignment and garbage collector
implementation.

Arrays are objects that are implemented with two fields:
length and data. In Harmony, the length field is stored as a
4B integer (as shown in Figure 5(b)) and the array’s data field
stored at a 12-byte offset from the beginning of the object.

There are four fundamental operations that can be per-
formed on arrays: i) allocation, ii) get length, iii) load
element, and iv) store element, which correspond to the
newarray, arraylength, *aload, and *astore byte-
codes, respectively. When arrays are allocated, the length
must be specified; if the programmer later desires a longer
array, a new array must be allocated, effectively making the
length field read-only after allocation. The arraylength
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operation, whose bytecode can be used with any type of
array, performs a null check—checking that an array does
in fact exist—and returns the value in the object’s length
field. The element load and store operations must perform
a null check and an array bounds check prior to completion
of the load or store; Java has separate bytecodes for each
type of array (e.g., caload and castore for loading from
and storing to char arrays). Java also provides a standard
String class, which includes an immutable char array as a
data member.

In addition to the standard bytecode execution path, Java
provides the Java Native Interface (JNI) that enables non-
Java code to inspect, modify, and create Java objects and
to call Java methods and be called from them. To offer
JVMs flexibility in their internal object representation of
Java objects, the JNI does not provide direct access to object
internals, but rather an interface for requesting Java data
items being returned as native types that in turn can be
inspected or modified and written back into Java objects.

Harmony’s standard garbage collector (gc cc) is a stop-
the-world, mark-sweep collector that dynamically selects
between copying and compacting. Regions of heap are allo-
cated as needed. During collection, each region is allocated
an associated card table, which stores a single bit for each 4-
byte chunk of heap. These bits are set for live objects during
the marking phase of the garbage collector. The sliding com-
paction phase is done with a single pass through the objects
where objects are assigned a new location, pointers pointing
to the object are updated, and the object is copied to its new
location.

3.2 High-level Design
There are three basic concepts involved in the implementa-
tion of accordion arrays: i) the three types of arrays: com-
pressed, uncompressed, and inflated, ii) the notion of infla-
tion and the level of indirection it introduces, and iii) the
dynamic dispatch necessary when accessing a character ar-
ray. We discuss each of these first in abstract terms and then
discuss how they can be encoded efficiently.

The first two types are rather straight forward: an uncom-
pressed array is like a standard Java character array; a com-

pressed array is similar to a Java byte array (i.e., 8-bit el-
ements), except its vtable pointer still points to the vtable
for character arrays. Obviously, since reading and writing
elements of these two types require different instruction se-
quences, we must be able to distinguish which type an array
is. Thus, we logically introduce a new field into the object
(as shown in Figure 6) that holds this type.

The third type is required due to the speculative nature
of this optimization. Since non-String allocated character
arrays (which accounts for most of them) are mutable, we
need to guess at allocation time whether a given array will
need to hold incompressible characters during its lifetime. If
we incorrectly guess that an array will be compressible, we
will need to reallocate the array (as an uncompressed one)
and copy over the array’s data; we refer to this process as
inflation. Once an array has been inflated, incompressible
characters can be written into it freely.

The main difficulty with inflation is that an arbitrary num-
ber of references may exist to the uninflated copy of the
array (which is now stale) and we need to redirect any ac-
cesses through these references to the new copy of the ar-
ray. Because the set of referring objects is not maintained,
we cannot efficiently update those references at the time of
the inflation. Instead, we create a third state for arrays, in-
flated, that indicates that an array no longer contains valid
data. Instead, inflated arrays (as shown in Figure 6) store a
forwarding pointer that indicates the location of the inflated
copy.

When code wants to read or write an element of an accor-
dion array, it must dynamically dispatch (based on the type)
to code that can operate on that type of array. Flow graphs
for character load and store operations are shown in Figure 7.
For both uncompressed and inflated types, a character array
load operation is implemented with a 16-bit load, but inflated
arrays must first de-reference the forwarding pointer to get
the array to load from. Compressed arrays simply require 8-
bit loads. The store case is structurally equivalent to loads for
uncompressed and inflated types, but, for compressed arrays,
we need to test if the character being stored is compressible.
If it is not, we need to first inflate the array before completing
a 16-bit store.

Encoding: While Figure 6 shows the type as a separate ob-
ject field, it is desirable, for performance reasons, to store
the type of the array somewhere that i) does not increase
object size, and ii) avoids introducing an additional load in-
struction into every array access sequence. For these reasons,
we encode the array type in the uppermost two bits of the
array length field; the length field must be loaded by array
bounds checks, one of which (or an explicit load of the array
length) must dominate every array access. By stealing these
bits we prevent arrays of 230 elements or larger from being
allocated on a 32-bit machine (i.e., what would be minimally
one-quarter of the process’s user-mode virtual memory). A
check that ensures this property holds is performed at array
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Figure 7. Implementing character array loads and stores (caload and castore) for accordion arrays requires dynamic dispatch
based on whether the array is compressed, uncompressed, or has been inflated.

allocation time. By assigning the compressed case the en-
coding 00 and the other two cases the encodings 10, and 11,
we can isolate the common case (compressed) with a sin-
gle conditional branch that checks whether the length field
is positive or negative.

We store the forwarding pointer for inflated arrays at the
same place where the first elements of the array’s data would
be stored. Because Harmony rounds heap allocations up to
4B boundaries, we are guaranteed to have room for this 4B
pointer for arrays of size 1 or greater; arrays of size 0 (which
are allocated) should never need to be inflated.

3.3 Modifications to the Memory Allocator
Based on the data presented in Section 2 that showed an
overwhelming majority of character arrays are compressible,
a reasonable policy for those workloads is to, by default,
allocate every character array as compressed. Applications
running in East Asian locales, in contrast, will likely find a
substantial fraction of character arrays containing characters
with values greater than 255. While it is likely quite feasible
to build a system that adaptively disables the use of accor-
dion arrays for such executions, doing so is beyond the scope
of this paper.

Without much work, we can actually do quite a bit bet-
ter than a default policy of compress everything or compress
nothing. Using information from the run-time, we can allo-
cate compressed arrays unless we can easily know at allo-
cation time that an uncompressed array will be needed (as
we can for Strings and the Object.clone() method). This
requires no extra work in the standard array allocator, if we
define the default character size (for computing the object
size) to be 8 bits and use the 00 encoding for type.

When allocating a character array in a String constructor
or as a result of Object.clone(), we make the compres-
sion decision based on program data. For clone, we use
the type of the array being cloned, which adds little over-
head since the array length field needs to be read anyway.
For Strings, we need to inspect the characters that will be
written into the array. This requires almost no overhead for

Strings created from UTF-8 arrays, as such arrays already
need to be scanned for multi-byte characters to compute
the number of Java Unicode characters they contain. When
Strings are created from Unicode arrays, however, an addi-
tional step of scanning the array for compressible characters
is performed1. In either case, when uncompressed arrays are
allocated, we need to compute the array’s size with 16-bit
characters and correctly annotate the length field with the
array’s type.

3.4 Modifications to the Code Generator
Because most of the interactions with accordion arrays will
be through the generated code, it is important that this code
can be implemented efficiently. For the discussion that fol-
lows, we focus on the store case (castore) because it com-
prises a superset of the issues encountered by caload. In
Figure 8, we show the code to perform a store on a Uni-
code character array and a byte array, which corresponds to
the case of a compressed character array. To build the code
required for an accordion array store, we have to add code
to dispatch based on type, for de-referencing the forward-
ing pointer for inflated arrays, and for inflating compressed
arrays on demand.

For efficient dispatch, we use a series of conditional
branches. Since the dispatch is based on type, we must first
(after the NULL check) load the array length field, which
contains the type specifier. Because the compressed type
is the most frequent, we use the first branch to isolate that
case, so there is only one dispatch branch on that path (as
shown in Figure 9). After performing the bounds check, the
compressed path must check if the value to be stored is less
than 256. If so, it performs the store. Otherwise, it branches
to a call to the inflation method described in Section 3.3.

A second dispatch branch is required to select between
paths for uncompressed and inflated types. Inflated
types de-reference the forwarding pointer to get a new ar-

1 This operation could be efficiently performed using SIMD vector instruc-
tions on many architectures, but we have not yet implemented this optimiza-
tion
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Figure 8. Example code for castore in pseudo assembly. a) code for writing to a standard Unicode (16b) array, b) corresponding code
required for storing to byte (8b) arrays. The primary differences are the lack of a shift operation and a different sized store in the second
version.

castore:  lw     rlength, 8(rbase)                #  1 load length field (w/type)                                                                                           
          blt    rlength, 0, uncomp1              #  2 branch if not compressed
compres:  bge    rindex, rlength, out-of-bounds   #  3 perform bounds check
          bgt    rchar, 255, inflate              #  4 char too large? need to inflate                                                                                                                                          
          add    rtmp, rbase, rindex              #  5 add base and index
          sb     rchar, 12(rtmp)                  #  6 perform 8b store                                                                                                             
          j      done                                                                                                                                    
inflate:  call   inflate_char_array               #  7 call VM to inflate & copy   
          move   rbase, r_new_array               #  8 put return value in rbase
          j      uncomp3                          #  9 complete 16b store 
uncomp1:  bgt    rlength, 0xbfffffff, uncomp2     # 10 branch if not inflated                                                                                                                                   
indirec:  lw     rbase, 12(rbase)                 # 11 get address of inflated version                                                                                                        
uncomp2:  and    rlength, rlength, 0x3fffffff     # 12 mask off type field from length
          bge    rindex, rlength, out-of-bounds   # 13 perform bounds check
uncomp3:  sll    rindex2, rindex, 1               # 14 scale index
          add    rtmp, rbase, rindex2             # 15 add base and index
          sh     rchar, 12(rtmp)                  # 16 perform 16b store                                                                                               
done:                                 

Figure 9. Complete castore code for supporting accordion arrays.

ray pointer, but there is no need to re-load the array length
field since we know the type and length of the array. After
reconverging, the uncompressed and inflated paths strip
off the type field from the array length, perform the bounds
check, and complete the store.

In addition, for the arraylength bytecode, we add an
additional instruction that masks out the type specifier.

While we have shown this code as assembly for ease of
exposition, caload and castore operations get expanded
in the high-level intermediate representation (HIR) by the
code lowering pass. This exposes these operations for opti-
mization and redundancy elimination by the compiler.

3.5 Handling Inflations
When a incompressible character needs to be written to a
compressed array, we need to first inflate it. In the worst case,
we need to allocate a new uncompressed array, copy over the
old data (converting the 8-bit characters to 16-bit characters),
update the type of the old array to inflated, and install
the forwarding pointer. In addition, the inflation potentially
presents a race condition, if another thread could be reading
or writing the contents of the array during the inflation. For
this worst case, we guarantee that this race condition is not

observed, by pausing all other threads using the “stop the
world” mechanism used by the garbage collector.

Luckily, the worst case scenario is not frequently neces-
sary. First of all, inflations are quite rare in general. In all
benchmarks, less than 1% of the character arrays need to
be inflated. Second, in most cases, the inflation occurs very
early in the array’s lifetime. Figure 10 shows code for three
inflation sites representative of the ones we observe to be
most frequent dynamically. In each case, after standard in-
lining expands calls to getChars and System.arraycopy,
the code responsible for the inflation is in the same scope as
the allocation site. This permits a very simplistic (intrapro-
cedural) form of escape analysis [8] to be performed to iden-
tify cases where references to the allocated array could not
yet have escaped the thread at the point of a character store.
When such analysis succeeds, we statically replace the call
to the inflate function with a call to a version that does
not perform a “stop the world.” In the runs of our bench-
marks, all but 23 of the over 16,000 dynamic calls invoke
the cheaper version of the call.

In addition, the array is often the most recently allocated
object by this thread. This means that frequently we can
inflate an object in place, by extending the object’s heap
allocation, which avoids adding a level of indirection. The



char[] characters = new char[wordLength];
word.getChars(0, wordLength, characters, 0);

output = new char[count];
i = o - offset;
System.arraycopy(value, offset, output, 0, i);

char[] dst = new char[length];
if (ASSERT) Assert.assrt("...");
for(int i=0; i<length; i++){
     dst[i]=getChar(rawData, stringOffset+getCharOffset(i));
}

Figure 10. Three examples demonstrating the scope between
the allocation of an array and the operations that potentially
inflate it. These examples all cause inflations in the DaCapo bench-
marks.

inflation code—both versions with and without the “stop
the world”—checks dynamically whether this was the last
object allocated (by comparing the current end of the array
to be inflated to the next free address) and whether additional
memory can be allocated to extend this allocation. Even
when it can be statically proven that this object must have
been the most recently allocated, a run-time check must be
perform that the end of a page or a pinned object will not
prevent an object from being expanded in place. We find that
the majority of objects (> 95%) can be expanded in place.

The overhead of the “stop the world” pauses that remain
are not completely devastating in our experiments, but we
believe this to be in part because our workloads are not heav-
ily multithreaded. Techniques that mitigate this overhead for
very parallel Java executions remains an open area of re-
search, as we discuss in the Section 6.

3.6 Modifications to the Garbage Collector
As noted in Section 3.1, Harmony (by default) uses a com-
pacting garbage collector, which presents two requirements
and one opportunity for optimization. The first requirement
is that to benefit from the array’s compression after garbage
collection, the GC needs to know the size of accordion ar-
rays. This is accomplished by testing the array length (which
needs to be loaded anyway) for negative values (indicating
that type bits are set), and using an alternate path to compute
the array size.

The second requirement is that the forwarding pointer
held by inflated arrays needs to be exposed to the garbage
collector. There are two reasons for this: i) the compressed
version of the inflated array may hold the only pointer to
the uncompressed version and we need to make sure that the
uncompressed version is identified as live during the mark
phase of the garbage collection, and ii) if the uncompressed
version of the array is moved, the forwarding pointer in the
compressed version needs to be updated. Both of these are

relatively straight-forward to accomplish by exposing the
forwarding pointer offset of an inflated array as a slot like
any other object variable that holds a pointer.

The opportunity introduced by garbage collection is to
remove the level of indirection introduced by inflation. Dur-
ing the compaction process, it is necessary to identify all
of the pointers to a given object so they can be updated to
point to the object’s new location. The key idea of our op-
timization is that, rather than update references to point to
an inflated array’s new location after compaction, we update
them to point to the new location of the target of its forward-
ing pointer (i.e., the uncompressed version of the array). In
this way, we can eliminate all references to the original com-
pressed version of an inflated array and, therefore, consider
the object dead. Figure 11 describes the steps of this opti-
mization as implemented in the gc cc in Harmony. All ad-
ditional steps require work that scales with the number of
inflated arrays that are compacted. Because very few infla-
tions require forwarding pointers in practice, this optimiza-
tions provides negligible benefit.

Most inflated arrays, like most character arrays in gen-
eral, do not live beyond a single garbage collection. Only in
eclipse do a significant number live past a garbage collec-
tion. Only for long lived arrays would it make sense to con-
sider deflating (i.e., reallocating an uncompressed array as a
compressed array if it no longer contained any incompress-
ible characters), and we see no potential benefit for such an
optimization.

3.7 Other Modifications to the Virtual Machine
While the above outlines the main changes required to im-
plement accordion arrays, there are a few other parts of the
JVM that directly access character arrays and these need
to be modified to dynamically dispatch based on whether
the array is compressed and handle inflated arrays. A few
of these changes are small and isolated: we mask the type
field for the standard vector get length() accessor and
provide our own vector get raw length() accessor for
when we want the type field intact, and the JVM tool inter-
face (JVMTI) needs to know the real size of objects. Two
other changes are more substantial.

The Java Native Interface API provides functions that
permit reading and writing the contents of Java character
arrays, reading the contents of Strings as either Unicode
UCS-2 or UTF-8 arrays, and querying the lengths of both
character arrays and strings. These functions need to be
modified to correctly handle all types of accordion arrays.
These changes are straightforward using the same principles
used to modify the code generator (Section 3.4).

The other major change is for the System.arraycopy
method. While a correct version of this method could be gen-
erated from Java bytecode, Harmony includes a higher per-
formance C implementation of this function. This C imple-
mentation must be extended to handle the cross-product of
copying between compressed and uncompressed arrays, and



1. Marking of live objects is performed; inflation objects that will be compacted are recorded on an inflation stack. 
2. Objects on the inflation stack can be unmarked.
3. New memory is allocated for objects to be compacted; relocation pointers stored in each object's obj_info field.
4. For all objects, obj, on the inflation stack:  # copy the uncompressed version's new location to obj_info

if obj.forward.will_be_relocated():  # will the uncompressed version be compacted?
obj.obj_info = obj.forward.obj_info

else:
obj.obj_info = obj.forward

5. The inflation stack can be discarded.
6. Live objects are traversed, updating their references to any moved objects (as indicated by obj_info).
7. Compacted objects are copied to their new locations.

Figure 11. Optimization to eliminate inflation objects during garbage collection. The steps in bold are the ones added by the
optimization. Alternately inflation objects can be inserted on the inflation stack during inflation.

potentially de-referencing forwarding pointers of inflated ar-
rays. Again, these changes are rather straightforward.

4. Results
In this section, we explore the performance impact of ac-
cordion arrays as implemented in Harmony. We use the
SPECjbb2005 benchmarks and 9 of the 11 DaCapo bench-
marks from the 2006-10 version of the suite. Timing exper-
iments are performed on idle dual-core machines running
Red Hat Enterprise Linux (2.6.9-42.08.ELsmp) on a 2.66
GHz Core 2 Duo processor with 2GB of memory.

In this work, we are concerned with asymptotic perfor-
mance, so we use Harmony’s server execution manager
configuration, which is a profile-directed adaptive optimizer
that tries to maximize asymptotic performance at the ex-
pense of compilation time. To avoid including compilation
time in our measurements, we use the DaCapo benchmarks’
-converge repeatedly run the benchmarks until the execu-
tion time stabilizes. For SPECjbb2005, we use a configura-
tion file that performs two runs back-to-back and record the
results from the second run. Because we observe some vari-
ation in run times, we repeat each configuration three times
and select the runs with the shortest execution time.

We run the default size versions of the DaCapo bench-
marks. We only present results for 9 of the DaCapo bench-
marks, because antlr and jython did not run to com-
pletion with Harmony’s optimizing compiler. With the ex-
ception of hsqldb whose live heap memory grows as
large as 72MB, all of the DaCapo benchmarks have max-
imum live memory sizes of 0.1MB - 30MB [5]. We used a
64MB heap size—-Xms64m -Xmx64m—for all of the bench-
marks except hsqldb where a 256MB heap was used. For
SPECjbb2005, we used 8 warehouses and a 512MB heap.
Results are presented as relative execution times for the
DaCapo benchmarks and relative throughput for SPECjbb,
which runs a predefined amount of time.

Figure 12 shows the performance improvements result-
ing from our implementation of accordion arrays. With in-
dividual benchmarks ranging from an almost 8% reduction
to a 1% increase in execution time, the average speedup
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Figure 12. Accordion arrays achieve speedups of 1.08 to
.99, averaging 1.02 across a benchmark suite containing
SPECjbb2005 and 9 DaCapo benchmarks.
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Figure 13. Accordion arrays reduce a Java program’s heap
allocation rate, which, in turn, reduces the rate at which
garbage must be collected. The figure shows the reduction in the
number of garbage collections performed during the run (in black)
and in the total time spent on garbage collection (in grey).

across the benchmark suite is 2%. Due the significant non-
uniformity of the speedups, we used instrumentation within
the JVM to help identify the principal causes of the speedup.

From our analysis, we identified the benefit of the tech-
niques to be correlated most strongly to two factors: 1) the
working set of the application, and 2) the fraction of that
working set that was made up of char arrays (see Figure 2).
This reduction in working set translates into improved mu-
tator (i.e., non-garbage collector) execution, because this
smaller working set of live objects results in better cache and
TLB locality and a reduction of memory system bandwidth.
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Figure 14. Accordion arrays reduce the size of live memory.
Compressed arrays require less memory, resulting in a reduction
in the size of memory live after a collection. This smaller live set
reduces the work to perform a copying or compacting collection
and also improves data locality.
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Figure 15. Reading and writing character arrays is relatively
uncommon. caload and castore bytecodes account for less than
3% of the bytecodes executed across all of the benchmarks.

Given that garbage collection (GC) time is quite modest for
most of these benchmarks, it is this improvement in mutator
performance that is responsible for the bulk of the perfor-
mance improvement for the benchmarks that see significant
speedups.

Nevertheless, we found correlations between overall per-
formance and the two aspects of the impact on the GC. The
first is a reduction in allocation rate and the corresponding
reduction in garbage collection (GC). Figure 13, shows the
reduction in both GC frequency (i.e., the number of GC’s
performed) and time spent performing garbage collection.
Garbage collection frequency is reduced because the heap is
not used up as quickly when compressed character arrays are
allocated. In a number of cases, the reduction of time spent
is greater than the reduction of number of collections, sug-
gesting that each collection is getting faster. This occurs for
copying and compacting collectors when there is a net re-
duction in the amount of live heap memory that needs to be
copied/compacted.

Furthermore, while accordion arrays do not affect the
number of live objects at a garbage collection, they do result
in a smaller amount of memory being live if some of the live
objects are compressed character arrays. The reduction of
live heap memory is significant in a number of benchmarks,
as shown in Figure 14.

One benchmark, eclipse, observes a small slowdown;
this is the result of it having the highest number of infla-
tions and the largest number of inflations requiring “stop
the world” pauses. Three benchmarks achieve little benefit
from accordion arrays: bloat, chart, and luindex. These
benchmarks have rather low memory allocation rates, spend-
ing 1% or less of their execution time performing garbage
collection in our experiments. With little upside potential,
the fact that these programs do not see significant slowdowns
attests to the low overheads that accordion arrays permit. In
particular, we have drawn three conclusions to explain the
absence of significant overhead.

First, we find that the overhead is low because character
arrays are rather infrequently accessed. Specifically, we find
that caloads and castores together typically only make up
1-3% of the total bytecodes executed, as shown in Figure 15.
This result is corroborated by previous work characterizing
the most frequently executed bytecodes in the SpecJVM
benchmark suite [6, 17].

Second, the dynamic dispatch branches added to the im-
plementations of caload and castore are extremely biased
since more than 99% of the character arrays are of a single
type. Furthermore, even when the minority type arrays are
being processed, there is generally a locality in the branch
outcomes that modern history-based dynamic branch pre-
dictors can exploit, because typically multiple characters are
processed when an array is accessed. Because the majority
of non-compressible arrays can be known as such at alloca-
tion time, inflations are diminishingly rare events; as a result
their branches are highly biased and, hence, predictable, as
well.

Third, because the dispatch and inflation branches are
predictable, much of the work added by the accordion ar-
ray implementation is “off the critical path.” In a modern
dynamically-scheduled—sometimes referred to as out-of-
order—processor, instructions are only prevented from ex-
ecuting by true data dependences. As shown in Figure 16,
the code that is added to implement accesses to accordion
arrays is in the form of compare and branch sequences that
do not produce values for other instructions. Instead these in-
structions only serve to validate the predictions made by the
branch predictor and, as we previously noted, these branches
are predictable. They do not delay the scheduling of the ac-
tual character load or store instruction, the only instruction
in the caload and castore sequence that could be on the
critical path.

5. Related Work
There is a significant body of work relating to improving the
memory efficiency of Java, but, to our knowledge, there is
no published work on compression of character arrays. In
addition, much of the work has been done in the context of
embedded Java implementations where it is allowable to sac-
rifice execution speed to reduce peak memory requirements.
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Figure 16. Accordion operation dataflow (as executed on an out-of-order processor) only adds predictable branches and ALU
operations in the common case. The added operations (lightly shaded) for the accordion array operations do not delay the execution of the
critical path (black).

Given that many Java objects are small, an important
focus of research has been to minimize the size of object
headers [3]. A key technique to simplifying object headers is
to use a “thin lock” that only provides the simplest subset of
Java object locking support; less common cases are handled
by dynamically allocating memory to hold the full lock state,
a process called inflation [4]. Ananian and Rinard reduce
the size of the vtable pointer, by instead storing in the
object an index to a table of vtable pointers, a space-time
trade-off [2]. Dybvig et. al. propose taking this process one
step further by entirely removing the vtable pointer and
allocating objects in memory based on type such that the
upper bits of the objects virtual address can be used to locate
the object’s vtable [16].

Chen et. al. observe that there is significant value locality
in the contents of certain object fields across objects of the
same type [7]. To exploit this locality, they propose an elab-
orate scheme that partitions objects into portions with low
and high information content and compresses the low infor-
mation content fraction. This approach reduces heap usage,
but comes at a performance penalty. Ananian and Rinard at-
tack the same locality but from a program analysis stand-
point with a number of optimizations that reduce the size
or eliminate object fields [2]. Their techniques include field
size reduction (guided by bit-width analysis), elimination of
unread or constant fields, and field externalization (storing in
a hash table those objects that contain values that differ from
the dominant value). Again, while these techniques can sig-
nificantly reduce minimum heap size, they can impose exe-
cution overhead. Neither technique targets arrays of primi-
tives.

With the advent of 64-bit architectures, there has been
a significant amount of work in pointer compression. Adl-
Tabatabai et. al. describe a straight-forward technique for
compressing heap pointers on a 64-bit architecture, by stor-
ing a 32-bit offset from the beginning of the heap [1]. When
pointers are loaded the heap base is added to the pointer be-
fore it is dereferenced. This approach provides substantial
speedup relative to 64-bit pointers but is limited to a 4-GB
heap. Lattner et. al. describe program analysis-based opti-
mization that automatically compresses 64-bit pointers to

32-bit offsets in linked data structures [12]. Their approach
differs from the one previously mentioned in that it is ap-
plied to a single data structure at a time, and because the
offsets are relative to a per-data structure base pointer, each
data structure can use up to 4 GB of memory.

In addition, there is extensive work in compressing Java
code. Researchers have explored how to compress Java class
files for storage and efficient network transmission (e.g.,
[15]). In addition, Clausen et. al. proposed a macro instruc-
tion approach—using unused bytecodes to encode common
application-specific sequences of bytecodes—to reduce the
amount of bytecode storage necessary in an embedded Java
interpreter [9].

6. Conclusion
In this paper, we have demonstrated the idea of accordion ar-
rays, a straight-forward approach to reducing the heap mem-
ory consumed by Unicode character arrays in locales where
the 8-bit ISO-8859-1 subset of UCS-2 is sufficient for repre-
senting the bulk of the text. We have presented a characteri-
zation of character array usage in non-numeric Java applica-
tions, described an abstract design of the accordion arrays,
and demonstrated, in the context of the Harmony DRLVM,
that the technique permits efficient implementations that can
improve memory efficiency, which in turn can improve over-
all program execution time.

A number of avenues of research relating to Java char-
acter compression remain. First, and foremost, is identify-
ing a race-free approach to inflation that completely avoids
“stop the world” pauses. One approach that merits further
research is the use of hardware support, either in the form
of a hardware transactional memory [11, 13] or a fine-grain
memory protection technique [14, 18]. Second, applications
from non-western locales need to be characterized and tech-
niques need to be developed for gracefully discontinuing use
accordion arrays when they negatively impact performance.
Finally, our performance results are collected with relatively
loose constraints on the amount of heap memory available.
As accordion arrays could prove to provide a substantial
performance benefit in memory constrained environments,



studying their behavior over a broad range of heap sizes is
warranted.
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