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ABSTRACT
Using a data set from 29,492 asynchronous exams in an on-
campus proctored computer-based testing facility (CBTF),
we observed correlations between when a student chooses
to take their exam within the exam period and their score
on the exam. Somewhat surprisingly, instead of increasing
throughout the exam period, which might be indicative of
widespread collaborative cheating, we find that exam scores
decrease throughout the exam period. While this could be
attributed to weaker students putting off exams, this effect
holds even when accounting for student ability as measured
by a synchronous exam taken during the same semester. This
suggests that precautions can be taken by a CBTF to maintain
cheating at a low level (e.g., the level of proctored synchronous
exams), in spite of the fact that students are taking their exams
over a multi-day period.

Author Keywords
asynchronous exams; student performance; cheating;
computerized testing.

INTRODUCTION
Exams are a frequently used method in college education to
assess students’ understanding of course material. However,
running exams for a large class (e.g., 200+ students) can be
a logistical nightmare [13, 18, 24]. It has been proposed that
computerized exams in a face-to-face proctored environment
can greatly reduce the overhead of running exams and broaden
the kinds of questions that can be automatically graded [24].
Key to the efficient implementation of computer-based exams
for large enrollment classes is running them asynchronously
(e.g., allowing students to choose their exam time within a
given time window), because it allows the testing center where
the exams take place to be much smaller than the largest class
and gracefully tolerates student conflicts [8, 25].

When faculty are invited to use asynchronous computerized
exams in their courses, their almost universal first concern is
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Figure 1. An example data set from one exam (Class D3, Exam 5) that
was conducted over a 4 day period. Student raw scores on the exam are
plotted against the day on which they took the exam, with each circle be-
ing a single student. The straight line is the OLS (ordinary least squares)
regression line of the exam score against the day of exam, revealing in
this case a large negative association between the day on which the stu-
dent chose to take the exam and their score. This exam has one of the
more negative slopes in our data set, and we chose it here because the
highly negative slope is very easy to visualize. For the slopes of all ex-
ams, see Figure 6.

the potential for collaborative cheating resulting from the asyn-
chronous nature of the exams. It seems initially reasonable
that students taking the exam on the first day would tell their
friends about the exam questions, giving students later in the
exam period an unfair advantage and resulting in increasing
exam scores over the exam period. In fact, in a survey of under-
graduate students, the most-reported cheating mechanism was
that they had “received answers to a quiz or test from someone
who has already taken it” for face-to-face (i.e., non-online)
classes [21].

However, when we plot students’ exam scores versus the day
on which they took the exam (see Figure 1 for an example), we
see that on average the scores are actually decreasing over the
exam period. We characterize this effect by the slope β of the
regression line in Figure 1 (for this exam, β =−0.82 standard
deviations per exam period). The questions addressed by this
paper are: (1) how robust is this negative-slope effect across
courses and across semesters, (2) what factors might explain
this phenomenon, and (3) what does this data suggest about
cheating during in-person asynchronous exams?
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We report on two investigations into the relationship between
when students elect to take their exams and their scores on
those exams. In Analysis 1, we consider the asynchronous
exam records of 9 courses over 3 semesters, demonstrating a
trend of declining performance throughout the exam period in
most of the 93 exams studied. In Analysis 2, we demonstrate
that this effect remains even if we control for student ability,
using a class that offered both a traditional (synchronous)
written exam along with computerized exams in the same
semester.

ANALYSIS 1 METHOD
The data collection took place in a large public research uni-
versity during the Spring 2015, Fall 2015, and Spring 2016
semesters. The data was drawn from asynchronous exams that
were held in the Computer-Based Testing Facility (CBTF) [24]
and administrated via the PrairieLearn system [22]. All of the
courses studied were undergraduate engineering subjects, rang-
ing from introductory to advanced classes in computer science,
mechanical engineering, and material science & engineering.
With IRB approval and the consent from all of the relevant in-
structors, the CBTF administrators have shared this collection
of data with us for this research.

Computer-Based Testing Facility
The CBTF is hosted in a converted computer lab with 49
seats for students and another 4 seats in a reduced distrac-
tion environment for students registered with the disability
resource center. Each of the computers is outfitted with a
privacy screen that prevents test takers from reading off the
screens of neighboring computers and the networking and
file system are strictly controlled [24]. During the period
studied, the facility was open/proctored 10-12 hours a day, 7
days a week to accommodate one to two thousand exams per
week [25]. Students were not permitted to take written notes,
photos or other records into or out of the exam room.

Exams within the CBTF are typically administered as fol-
lows [25]: Courses typically assign a 3-5 day period for the
students to take an exam depending on the class size; longer
exam periods are used during finals week. Students are free to
reserve any time during this exam period, provided that there
are slots available at that time. Generally, the exam periods
of exams from different classes overlap each other and the
CBTF is almost always running a number of distinct exams
concurrently. Sign-ups for exams typically begin 2 weeks
before the exam period begins. Exam periods are scheduled so
that the CBTF doesn’t need to run at more than 85% capacity
on any given day, to provide students many potential exam
times to choose from and to be able to tolerate any operational
problems. At their scheduled exam time, students have their
identity checked by a proctor and are randomly assigned to a
computer (to deter coordinated cheating).

PrairieLearn
PrairieLearn is an online problem posing system that per-
mits the specification of problem generators, each of which
is capable of generating a range of parameterized problem
instances [22]. For exams, PrairieLearn can be configured to
select random problem generators from a pool of questions and

Course and Number of Number Average number of
semester students of exams questions per exam

Class A2 180 5 22.6
Class A3 335 4 22.5

Class B2 576 5 3.0
Class B3 271 7 8.0

Class C1 482 2 25.0
Class C2 233 7 7.9
Class C3 453 7 9.7

Class D3 91 7 11.0

Class E3 75 5 14.8

Class F2 593 8 16.9
Class F3 587 9 15.4

Class G2 182 1 10.0
Class G3 250 1 15.0

Class H1 329 3 9.7
Class H2 362 4 11.2
Class H3 196 5 17.2

Class I2 246 7 4.7
Class I3 350 6 4.7

Table 1. Summary information for the 93 exams used in Analysis 1. Each
course is indicated by a letter (A–I) and a number for the semester (1 =
Spring 2015, 2 = Fall 2015, 3 = Spring 2016). Some courses only started
using the CBTF/PrairieLearn environment in later semesters.

randomly generate problem instances from those generators
to meet instructor-defined coverage and difficulty criteria [25].
Students sitting next to each other in the CBTF will typically
be taking exams from different courses, but even if they are
taking the same exam, they will generally have different sets
of parameterized questions or the same set of questions with
different parameters [25]. PrairieLearn also supports allowing
students to have multiple attempts at each question with a
partial-credit schedule controlled on a per question basis [25].

For each student taking an exam in the CBTF, PrairieLearn
logs all the submissions the student makes during the exam
period and calculates and stores the final score based on the
instructor’s multiple-attempts scoring scheme.

ANALYSIS 1 RESULTS

Data overiew
Our data set consists of 29,492 student records from 93 ex-
ams in 9 courses over 3 semesters, as listed in Table 1. To
obtain this data we took all required exams1 conducted using
the CBTF/PrairieLearn system during these semesters, which
yielded 106 exams in total. We then excluded 13 outlier exams
with highly unusual score distributions (kurtosis more than
10), for which nearly all students received an identical score
1By only including required exams we excluded “second chance”
exams that allowed students to optionally replace part or all of an
exam score by taking a second equivalent exam at a later date [24].
Such optional exams introduce complex selection biases as they are
taken by a non-random subset of students, so we excluded them from
the analysis.



(e.g., nearly all students received 100%). All of the courses
were undergraduate engineering subjects, ranging from intro-
ductory to advanced classes in computer science, mechanical
engineering, and material science & engineering. The exam
questions ranged from multiple choices, fill in the blank, and
numerical calculations to vector drawing, finite state machine
design, and coding.

For each of these 93 exams we obtained all student records,
which are triples of the form (day of exam, hour of exam,
raw score). The day of exam ranged from 1 to the exam
period length (variable across exams, generally 3 to 4 days,
maximum of 8 days), the hour of exam ranged from 1 to 12,
and the raw-score was on a 0% to 100% scale.

For each exam we excluded the student records for any student
who completed less than 25% of the exams in the class to avoid
including course staff members engaged in exam checking and
students who dropped early in the semester. We also excluded
313 student records that occurred outside the official exam
periods because the student was sick, on travel, or had some
other excuse, and which would otherwise exert an artificially
high influence on the score slope estimates.

Score standardization and distributions
We standardized each raw score to a standardized score on
an exam-by-exam basis. That is, the standardized score is
computed by subtracting the exam mean and dividing by the
exam standard deviation, so the standardized score measures
the number of standard deviations above or below the mean.

To understand the exam score distributions we computed the
mean raw score, skewness, and kurtosis for each exam, as
shown in Figure 2. These plots show that the score distribu-
tions are not normal (which would have zero skewness and a
kurtosis of 3), but that they deviate from normal in a structured
way. While non-normal distributions are pervasive [16], the
particular form of non-normality in our score distributions
has been observed since the middle of the last century [14, 5,
12]. As described by Lord [14], two key observed features
are: (1) exams with mean above 50% generally have negative
skew, and (2) exams with near symmetric distributions (skew
near zero) generally have negative excess kurtosis (i.e., they
are platykurtic, with kurtosis less than the normal distribution
kurtosis of 3, so have light tails [23]). For exams with means
well above 50%, we see that they are skewed left (negative
skew) and have positive excess kurtosis (kurtosis more than 3,
heavy tailed, leptokurtic).

The non-normality of exam scores can be explained by re-
garding the distribution as a limited (or censored) normal
distribution, where scores that would be below 0% or above
100% are limited to these values. Figure 3 shows two example
normal probability plots (Q-Q plots versus a normal) for rep-
resentatives exams. We see in both cases that it is the limiting
of scores at 0% and 100% that is causing non-normality.

There are many statistical techniques designed to either nor-
malize non-normal data (e.g., the Box-Cox transform [19] or
Item Response Theory (IRT) scoring and normalization [15])
before performing regressions or to perform a regression di-
rectly with a model designed for the non-normal data (e.g.,
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Figure 2. Summary statistics for the exams. Each data point is one
exam. The dashed line in the bottom plot is the lower bound for kurtosis
in terms of skewness. These plots show that the exam score distributions
are non-normal in a way that is consistent with limiting (also called cen-
soring) of the scores at 0% and 100%. Normal probability plots for the
two representative labeled exams are shown in Figure 3 and demonstrate
this limiting effect.
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Figure 3. Normal probability plots for two representative exams (see Fig-
ure 2 for skew and kurtosis values of these exams). Left: I2-E6 (Class I2,
Exam 6) has a nearly symmetric distribution (skew near zero) and nega-
tive excess kurtosis (kurtosis less than 3, so lighter-tailed than a normal
distribution). Right: I2-E5 (Class I2, Exam 5) has a left-skewed dis-
tribution (negative skewness) with positive excess kurtosis (heavy-tailed
relative to normal). In both cases we can see that these effects are due to
the limiting of the distribution at 0% and 100%.
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Figure 4. Fraction of students taking the exam on each day. Each exam
is a single line on the plot. The horizontal axis shows the normalized day
of exam, so 0 is the first day of each exam and 1 is the last day.

Tobit models [20]). However, in many situations it may be
difficult to avoid introducing other artifacts, such as highly
discretized transformed distributions [12].

For this reason and to maintain simplicity of the analysis
and clarity of interpretation, we calculate regressions with
the standardized exam scores without any extra treatment for
non-normality. This will have the effect of systematically un-
derestimating regression slopes [9] because the limited scores
have been capped at 0% and 100%, lessening their impact.
This means that the effect sizes found in this work are actually
underestimates of the true effect.

Day-of-exam student preferences
To compare day-of-exam values between exams of different
period lengths, we normalized by dividing the day of exam
by the exam period to get the normalized day of exam which
ranges from 0 on the first day of the exam to 1 on the last day.

Using this scaling we can plot the fraction of students taking
the exam on each day for all exams, as shown in Figure 4. Here
we see that, when given agency in selecting their exam times,
students overwhelmingly prefer to take exams toward the end
of the exam period. Each series of connected line segments
in Figure 4 represents the distribution of students for a single
exam throughout its exam period. The trend in this data is
almost exponential, with 40% to 80% of the students taking
most exams on the last day of the exam period. While many
student motivations could explain this data, two significant
hypotheses are: 1) students are delaying their exams so as to
have time to gather information from other students that took
the exam early in the exam period, and 2) students are self-
selecting later exam times so as to give themselves additional
preparation time before the exam.

Score as a function of exam day
For each exam we used OLS (ordinary least squares) to fit a
regression line of the form

zik = αk +βkdik, (1)
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Figure 5. Histogram of exam slopes βk (change in standardized exam
score with normalized day of exam). The units of β are score standard
deviations per exam period, so that a value of β =−0.5 means that scores
decline on average by half a standard deviation from the start to the end
of the exam.

where student i took exam k on normalized day of exam dik
(0 to 1 for first day to last day) and received the standardized
score zik. The fitted parameters are the intercept αk and the
slope βk for exam k, and we also determine the sampling
variance vk of each slope βk. Note that the regressions are
performed for each exam independently.

The slope β has units of standard deviations per exam period,
so a value of β =−0.5 would mean, roughly speaking, that
the student exam scores decline by one half of a standard
deviation from the first day to the last day of the exam.

A histogram of the slopes βk for all exams is shown in Fig-
ure 5. The dominant feature is that most exams have negative
slopes, meaning that student scores decline over the exam pe-
riod. While this histogram captures the main effect that slopes
are generally negative, it does not allow us to visualize the
uncertainty in the slope estimates or to see the relationships
between exams for the same class.

Meta-analysis of exam score slopes
To understand the average score trends for asynchronous ex-
ams we use the framework of meta-analysis [7] to find the
average score slope. We begin by visualizing the slopes βk
together with their 95% confidence intervals on a forest plot in
Figure 6. A forest plot is a standard meta-analysis visualization
tool [7, Chapter 26] that shows effect sizes for many different
studies together with their confidence intervals (horizontal
bars) and an indicator of study reliability (area of circles).

The two-tailed significance levels (p-values) for the slope
being non-zero are shown on the right hand side of Fig-
ure 6. About half of the exam slopes are statistically sig-
nificantly negative (p < 0.05), a majority of the remainder
are non-significantly negative, and a small number are non-
significantly positive. None of the exams have a slope that is
statistically significantly positive (p < 0.05).

There is no clear consensus in the meta-analysis community
on how to combine regression slopes in the general case [6].
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Figure 6. Forest plot shows the slopes βk of standardized exam score versus normalized day of exam. Each circle represents the slope of one exam and
they are grouped by the course and semester as shown on the left. The area of each circle is proportional to the weight wk = 1/vk of the exam in the
meta-analysis and the horizontal error bar is the 95% confidence interval for the slope. The diamond at the bottom of the figure represents the average
population slope θ = −0.399 (95% CI [−0.458,−0.340]) for all exams and its width specifies the 95% confidence interval (random-effects model, see
Eq. (3)). The two-tailed significance levels of the exam slopes away from zero are shown on the right of the figure as a number of stars.
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Figure 7. Normal probability plot for the slopes βk from all exams. This
shows that the slopes are approximately normally distributed.

However, both Becker and Wu [2] and Cooper [6] suggested
that under the condition when both the response and inde-
pendent variables are measured similarly across studies, the
regression slopes can be safely combined by treating them as
a simple effect. This is the approach that we adopted below.

A normal probability plot for the slopes βk (shown in Figure 7)
reveals that they can be regarded as normally distributed. It is
thus tempting to use a fixed-effects model of the form

βk = θ + ek, (2)

where θ is the common slope for all exams and var(ek) = vk
is the known sampling variance of the kth slope. We find, how-
ever, that such a model fails to account for the heterogeneity
in the data. Homogeneity is rejected (p < 0.0001, Q = 216.7)
by the standard homogeneity Q-test (Cochran’s χ2 test) [7,
Chapter 14] for a common population effect size, and a more
advanced measure of heterogeneity [11] finds that I2 = 57.5%
of the total variation is due to heterogeneity between exams (a
medium degree of heterogeneity).

To account for exam heterogeneity we use a random-effects
model of the form

βk = θ +uk + ek, (3)

where θ is now the average population slope, var(uk) =
τ2 is the heterogeneity between exams, and var(ek) is the
known sampling variance of the kth slope. Fitting this model
yields an average population slope of θ = −0.399 (95% CI
[−0.458,−0.340]) which is negative (p < 0.0001). This av-
erage slope is plotted in Figure 6 as the diamond near the
bottom.

ANALYSIS 1 DISCUSSION
While many instructors anecdotally expect that exam scores
will rise with day of exam over the exam period either be-
cause students have longer time to prepare or because they
are colluding with students who have taken the exam at an
earlier date, our results show that in fact the opposite occurs
and on average the exam scores decline by about 0.4 standard
deviations over the period of the exam. In fact, we expect that

we have underestimated this effect because we computed per-
exam slopes with OLS (ordinary least squares) and ignored
the non-normality introduced by the score limits at 0% and
100%.

From Figure 6 there are some indications that the effect size
might vary between courses or between semesters. We have
not attempted to isolate such variation in the analysis here,
but this represents an interesting possibility for future work,
perhaps by using three-level (or higher) models [4].

Although the Analysis 1 results do not seem to indicate the
existence of widespread collaborative cheating, the possibility
exists that stronger students are choosing to take the exam
on earlier dates than weaker students. In this case an exam
without cheating might actually have a steeper decline (say 1
standard deviation) and collaborative cheating might be assist-
ing the weaker students later in the exam (say by 0.6 standard
deviations), resulting in the net decline of 0.4 standard de-
viations that we observe. We investigate this possibility in
Analysis 2 below.

ANALYSIS 2 METHOD
Although the above analysis demonstrated that students’ exam
scores decrease over time, it does not rule out the possibility
that the phenomenon can be explained by good students select-
ing earlier exam dates while less capable students select later
exam dates. To examine the influence of students’ ability, we
need to calibrate it in some way and take it into account in the
regression model. A class that employs both synchronous and
asynchronous exams in the same semester can provide such
calibration.

In this regard, we exploit a natural experiment resulting from a
class that adopted asynchronous computerized exams part way
through the semester. In Class C1, a traditional pencil-and-
paper synchronous exam (Exam 0) was held before the class
changed to hold the remaining two exams (Exams 1 and 2) as
asynchronous computerized exams in the CBTF. This exam
structure allows us to use Exam 0 as a measure of student abil-
ity and investigate how controlling for student ability changes
the observed trends of decreasing student performance from
the beginning to the end of the exam period on Exams 1 and 2.

Exam Details
The three exams are detailed in Table 2 and the associated
score distributions are shown in Figure 8.

Exam 0 was a pencil-and-paper multiple-choice exam in a
format that had been traditionally used in Class C, covering
material in Homeworks 1–4. All students took the exam at the
same time in large classrooms proctored by course staff. The
instructor of the course willingly shared the information of the
first exam with us for this analysis.

Exams 1 and 2 were computer-based exams administered us-
ing PrairieLearn [22] in the CBTF [24], as described above in
Analysis 1. Exam 1 was non-comprehensive, covering mate-
rial from Homeworks 5–7, while Exam 2 was a comprehensive
final exam. These exams used a fixed pool of questions for
all students, with each student getting different parameter-
ized versions of the same questions, with the question order



Type Purpose Duration Format Questions Mean Std dev Skew Kurtosis

Exam 0 Synchronous Midterm 2 h Pencil and paper 20 63.9% 14.0% −0.083 2.760
Exam 1 Asynchronous Midterm 2 h Computerized 20 60.7% 15.1% −0.260 2.839
Exam 2 Asynchronous Final 3 h Computerized 30 73.6% 16.9% −0.841 3.313

Table 2. Summary information for the three exams used in Analysis 2. Eleven students did not take all three exams during the official exam periods and
their records were discarded from the data set. All statistics and analyses use the 469 common students who took all three exams. Exams 1 and 2 are
also part of the Analysis 1 data set, where they are the two exams in Class C1. See Figure 8 for score distributions.
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Figure 8. Histograms of exam scores used in Analysis 2. See Table 2 for summary statistics.

randomized. Exam 1 consisted of 10 questions previously
assigned as homework and 10 questions that were new for the
exam. Exam 2 was drawn exclusively from the pool of 199
PrairieLearn-based homework questions that were assigned
throughout the semester. For Exam 1 students were given
only one attempt at each question and were graded as cor-
rect/incorrect. For Exam 2 students were able to re-attempt
questions for partial credit during the exam.

ANALYSIS 2 RESULTS

Slope of exam scores by day of exam
We follow the same procedure as in Analysis 1 and standardize
the raw exam scores to standardized scores on an exam-by-
exam basis. For Exams 1 and 2, the day of exam is normalized
by the exam period to give the normalized day of exam that
runs from 0 to 1. The number of students taking the exams on
each day is shown in Figure 9, where we see the same general
upward trend for Exam 1 as in Figure 4. The drop on the last
day was atypical; only 13 out of 93 exams studied in Analysis 1
have this phenomenon. We believe that the behavior observed
for this exam is due to the fact that about 40% of the students
were enrolled in another class that held an exam immediately
after the last day of the exam period. The upward trend was
less pronounced for Exam 2 because it was held in the final
week of the semester when many students wanted to leave
campus early. The drop in the middle is caused by the same
co-enrollment class holding a final exam on day 5.

Figure 10 shows the raw exam score distributions by day of
exam for Exams 1 and 2 (Exam 0 was held at a single time,
so does not have a corresponding plot). The OLS models
from Analysis 1 for these standardized exam scores versus
the normalized day of exam is shown in Table 4, where the
model variables are listed in Table 3. These slopes are shown
graphically in the upper half of Figure 11, and an average slope
of βday =−0.607 (95% CI [−0.794,−0.419]) was computed
using a fixed-effects model of the form shown in Equation (2).
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Figure 9. Number of students per exam day for Analysis 2.

Exam scores controlling for Exam 0 score
To investigate the hypothesis that the negative slopes observed
in Analysis 1 are due to higher-ability students preferentially
taking the exam early, we take Exam 0 scores as a proxy for
ability and use it as a control when regressing Exam 1 and 2
scores against the day of exam.

We first checked the correlation of Exam 0 scores with the
scores and days of Exams 1 and 2, as shown in Table 5. As
expected, Exam 0 scores are significantly positively correlated
with both Exam 1 scores and Exam 2 scores. Students who
performed well on Exam 0 are also likely to have taken Exam 1
earlier in the exam period (statistically significant negative cor-
relation), but there is no statistically significant relationship
between Exam 0 scores and the day of Exam 2. This is consis-
tent with stronger students choosing to take Exam 1 somewhat
earlier, but there being no clear preference for scheduling times
for Exam 2 which was held at the end of semester.

The lower two models in Table 4 show the regression of the
Exam 1 and 2 scores against the day of exam and Exam 0
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Figure 10. Raw scores versus day of exam for the two asynchronous ex-
ams in Analysis 2. The trend line is the OLS regression, as in Analysis 1,
and in both cases it shows a negative slope.

Variable Description

score0 Standardized Exam 0 score
score1 Standardized Exam 1 score
score2 Standardized Exam 2 score
day1 Normalized day of exam for Exam 1
day2 Normalized day of exam for Exam 2

Table 3. Variables used in Tables 4 and 5.

Dep var Indep Coef 95% CI R2

score1 const 0.364 0.187 0.542 0.045day1 −0.609 −0.865 −0.352

score2 const 0.315 0.145 0.485 0.038day2 −0.604 −0.881 −0.327

score1
const 0.257 0.105 0.409

0.303score0 0.513 0.436 0.589
day1 −0.429 −0.650 −0.209

score2
const 0.306 0.157 0.455

0.266score0 0.478 0.399 0.556
day2 −0.586 −0.829 −0.343

Table 4. Linear models for Exam 1 and Exam 2 standardized scores in
terms of the normalized day of exam (top two model rows), and in terms
of the normalized day of exam and the standardized Exam 0 score (bot-
tom two rows). See Table 3 for variable descriptions. Figure 11 shows a
graphical representation of the dependence of each model on the day of
exam variables.

Correlation r p 95% CI

score0 with score1 0.531 0.000 0.462 0.593
score0 with score2 0.480 0.000 0.407 0.547
score0 with day1 −0.121 0.009 −0.210 −0.031
score0 with day2 −0.012 0.793 −0.103 0.078

Table 5. Correlation coefficients between student scores on Exam 0 and
both the scores and the day of exam for Exams 1 and 2. The scores are
positively correlated, and there is a weak negative correlation between
Exam 0 score and the day of exam for Exam 1. See Table 3 for variable
definitions.

scores, where we are regarding the Exam 0 scores as a proxy
for student ability. Because the independent variables are
correlated, we must be careful of multicollinearity in perform-
ing these regressions. We computed the variance inflation
factor [1, Chapter 13] and found VIF < 1.02 for all indepen-
dent variables, indicating that multicollinearity is very low
and not a concern. The regression coefficients of Exam 1
and 2 scores with day of exam in the models with Exam 0 as
a control are plotted in the lower half of Figure 11, and the
average fixed-effects slope is βday,Exam0 = −0.500 (95% CI
[−0.663,−0.337]).

From Figure 11 we can also see that controlling for student
ability via the Exam 0 score reduced the magnitude of the
average slope by about 18%, from −0.607 to −0.500 standard
deviations per day (not statistically significant, p = 0.402).

ANALYSIS 2 DISCUSSION
The magnitude of the negative exam score slope over the
exam period is only mildly reduced (about 20%), and not
statistically significantly, when controlling for student ability
as measured by the synchronous Exam 0 scores. This suggests
that the negative slope in scores is not primarily due to stronger
students taking the exam earlier, although this does happen to
a small extent.

Because Exam 0 is only a proxy for student ability and only
moderately correlated with Exam 1 and 2 scores, we cannot
rule out the possibility that early exam taking by stronger
students is in fact responsible for a larger (or even entire)
proportion of the declining-scores effect. One potential ap-
proach to more definitively resolve this question might be to
use student performance data from other courses as a control.

CONCLUSIONS AND FUTURE WORK
In this paper we examined approximately 30,000 asyn-
chronous exam records from 93 exams in 9 courses over 3
semesters to test the hypothesis that collaborative cheating
would inflate student scores in asynchronous exams held in
a face-to-face, proctored testing center. We did not find any
significant evidence that collaborative cheating was inflating
student scores later in the exam period. In fact, we found that
student scores decreased substantially over the course of the
exam period (by about 0.4 standard deviations), even when
controlling for student ability as measured by a synchronous
exam scores. In the engineering and computer science courses
that formed our data set, 0.4 standard deviations typically cor-
responds to about half of a letter grade, making this a sizable
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Figure 11. Forest plot for the regressions against day of exam in Analysis 2, as listed in Table 4, with error bars indicating 95% confidence intervals.
The “Uncontrolled” regressions fit Exam 1 and 2 scores as functions of the day of exam, while the “Controlled” regressions fit as functions of day of
exam and Exam 0 scores, which are a proxy for student ability. The average slope diamonds are the fixed-effects average of the corresponding two exam
slopes, and their widths are the 95% confidence interval. We see that controlling for ability reduces the average slope magnitude from −0.607 (95% CI
[−0.794,−0.419]) to −0.500 (95% CI [−0.663,−0.337]) (not statistically significant).

effect. This decline in scores over the exam period seems to in-
dicate that student choice of exam date is revealing additional
information about their preparedness or ability level, above
and beyond that measured by their scores on the traditional
synchronous exam.

In addition, our initial investigations suggest that there also
is a time-of-day effect, with similar structure to the day-of-
exam effect that is the focus of this paper. Students were
able to choose what time they take their exams, and they
predominantly preferred exam times later in the day, especially
near the end of an exam period. Furthermore, exam scores
are negatively associated with the time of day of the exam,
although the effect is considerably weaker than the day-of-
exam effect. The consistency of these results support the
hypothesis that students are signaling their lack of preparation
for an exam by selecting later slots in the exam schedule. This
observation opens up the possibility that interventions could
be targeted to these students.

Our results also support an alternative hypothesis for the study
reported by Brothen and Peterson [3]. Their work reports
a natural experiment that occurred during a proctored asyn-
chronous computerized final exam where students could elect
the day on which to take their exam. Computer problems
interrupted the exam in the middle of the first exam period,
forcing the faculty to provide the first cohort the opportunity
to take the exam online and unproctored later in the week, as
some students’ travel arrangements prevented them from com-
pleting a proctored make-up later in the exam period. When
this cohort out-performed the rest of the class by 0.63 stan-
dard deviations, the authors found that cheating was the most
likely explanation. Our data suggests that a non-trivial portion
of this difference can be explained because the experimental
cohort was the one that chose to sign up for the first time
slot. That cheating may not have been the dominant effect is
also supported by the partial results from the aborted exams,
which actually projected higher average scores than the cohort
achieved on their unproctored re-take.

While our findings suggest that collaborative cheating is not
the dominant effect in these asynchronous exams, we certainly

cannot conclude that no collaborative cheating is occurring
from our results. Nevertheless, it gives some confidence that
the precautions taken by the CBTF (e.g., proctoring, question
randomization, preventing notes from being brought in or
removed from the CBTF) are sufficient to prevent widespread
collaborative cheating. Therefore in-person asynchronous
environments are encouraged to adopt similar strategies to
prevent cheating. Our results, however, offer no direct insight
into cheating in the context of unproctored, online exams [10,
17, 21]. Regardless of this, it would be interesting to repeat
the analysis with online testing data both for remote-proctored
and unproctored online exams, to see whether similar effects
are seen in those environments and whether there is evidence
of cheating.

The trend of decreasing performance throughout the exam
period is well supported by the data, but there is a lot of vari-
ation between classes and exams that remains unexplained.
Our current hypothesis is that this variation is derived from
variations in exam construction (e.g., exam length, exam dif-
ficulty, drawing questions from a pool versus using a fixed
set of problems for all students). In particular, we believe it
is important to understand the degree to which any of these
characteristics contribute to deterring collaborative cheating.

Finally, our analysis largely treats each student taking each
exam as independent events. We believe that future work that
exploits the structure in the data could more clearly eludicate
these effects. A few extensions are obvious. First, because our
anonymized data set retains the association for all exams taken
by a given student, we can study if individual students perform
better when they choose to take exams early in the exam
period. Second, we can use multi-level models to recognize
that, for example, Class H1 Exam 1 is basically the same
exam as Class H2 Exam 1 that is taken by a different student
cohort. Lastly, we can explore the degree to which our results
are being unduly affected by a certain portion of the student
distribution, for example the very weakest students choosing
to postpone the exam as long as possible.
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