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ABSTRACT

“Explain in plain English” (EipE) questions have been proposed
as an important activity and assessment for studying novice pro-
grammers’ grasp of programming knowledge and their ability to
communicate their understanding. However, EipE questions aren’t
widely used in introductory programming courses in part because
of the large grading effort required. In this paper, we present our
experience of using peer grading for EipE questions in a large-
enrollment introductory programming course, where students were
asked to categorize other students’ responses. We developed a novel
Bayesian algorithm for performing calibrated peer grading on cat-
egorical data, and we used a heuristic grade assignment method
based on the Bayesian estimates. The peer-grading exercises served
both as a way to coach students on what is expected from EipE
questions and as a way to alleviate the grading load for the course
staff. Based on four rounds of peer-grading activities, we found that
students are generally capable of categorizing responses to EiPE
questions and that our proposed Bayesian method is more robust
than unweighted voting.
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1 INTRODUCTION

“Explain in plain English” (EipE) questions, as exemplified in Fig-
ure 1, present students with a piece of code and ask students to
describe in natural language what the code does. These questions
often emphasize the desirability of holistic descriptions that capture
the purpose of the code rather than line-by-line descriptions.
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Write a short, high-level English language description of the code in the highlighted region. Do
not give a step-by-step description.

Assume that x is a list of numbers. You can assume that the code compiles and runs
without error.

def f(x):
z=10
for y in x:
ify %2 ==1:
z=2z+y
return z

(2]

Your last submission before the homework deadline (the 100% credit one) will be peer
graded after the deadline.

Figure 1: An example EipE question.

EipE questions have been proposed as a way to assess students’
ability to read code, a skill theorized to play an important role in
learning to program [10]. Researchers have suggested that there is a
hierarchy of programming skills that novices have to master: under-
standing the syntax (easiest), code tracing, code reading/explaining,
and code writing (hardest) [12]. Students’ struggles with code writ-
ing might be due to their insufficient mastery of skills lower in the
hierarchy. We discuss more on this line of work in Section 2.1.

Despite their potential utility for teaching programming, code
reading tasks such as EipE questions aren’t widely used in intro-
ductory programming courses in part because of grading load con-
cerns [7]. Unlike code tracing and code writing questions whose an-
swers can be cleanly categorized into correct and incorrect, allowing
them to be automatically graded most of the time, EipE questions
involve natural language responses, which are less straightforward
to grade and would typically require manual grading.

In this work, we explore peer grading as a way to both reduce
the grading load for course staff and train students on the grading
criteria of EipE questions in a large-enrollment university-level
introductory programming course. Specifically we: 1) describe how
we set up the peer-grading exercises, 2) describe a mathematically
rigorous Bayesian algorithm which we believe to be the first pub-
lished method of calibrated peer grading on categorical data, 3)
compare students’ votes and teaching assistants’ (TAs) votes and
find that their overall distributions are similar, 4) compare the per-
formance of the proposed Bayesian method against unweighted
voting and a heuristic weighted voting and find that the proposed
method is more robust than unweighted voting.
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Response category

Example response

(a) a clear, correct, high-level answer

compute the sum of odd numbers in a list

(b) functionally incorrect or incomplete

The code finds the sum of all negative numbers in a list.

(c) ambiguous, not understandable, or garbage

returns the sum

(d) too low level

iterates y through the list x, adds y to z if y mod 2 equals 1, then returns z

Table 1: Student answers to EipE questions can be categorized into one of four categories: correct and having one of the three
major shortcomings. For each category we show an example response to the question shown in Figure 1.

2 RELATED WORK
2.1 Hierarchy of programming skills

The idea that there is a hierarchy of programming skills was put
forward by Lopez et al. in 2008 [13]. These skills range from under-
standing syntax (easiest), to code tracing, to code reading/explaining,
to code writing (hardest) [13]. Evidence suggests that for the same
piece of code, task difficulty generally increases as we move up the
hierarchy (e.g., tracing bubble sort vs. reading/explaining bubble
sort vs. writing a bubble sort) [12, 29], and students’ performance
on tasks only requiring the lower level skills is predictive of their
performance on code writing tasks [5, 11, 12, 26]. For example,
Lopez et al. find that students’ performance on tracing and code
reading questions together explain 46% of the variance in their
performance on code writing questions [12]. In a later study, Lister
et al. state that, while their data doesn’t support the idea of a strict
hierarchy, “We found that students who cannot trace code usually
cannot explain code, and also that students who tend to perform
reasonably well at code writing tasks have also usually acquired
the ability to both trace code and explain code.” [11].

Whalley et al. argue that for novices, understanding a piece of
code and knowing the relevant knowledge are prerequisites to write
the same piece of code [29]. Specifically, programmers need to think
about code at the relational level rather than the multi-structural
level [29]. Longitudinal studies show that students who struggle
to explain code at a relational level early in the semester tend to
struggle to write code later in the semester [5].

Multiple authors have argued that novice instruction should fo-
cus more on code tracing and code reading [1, 3, 4, 11, 17, 30]. Lister
et al. state, “It is our view that novices only begin to improve their
code writing ability via extensive practice in code writing when
their tracing and explaining skills are strong enough to support
a systematic approach to code writing [...] Until students have
acquired minimal competence in tracing and explaining, it may be
counter productive to have them write a great deal of code ” [11].

Code reading tasks may be the most suitable activity for novices
to learn common programming idioms. One key distinction be-
tween novice and expert programmers is that experts can process
multiple syntax elements as one unit by ‘chunking’ [3, 8, 16, 31],
which leads to less cognitive load [24]. These chunks (or schema in
the cognitive load literature) are developed through repeated expo-
sure to problems with common identifiable features [15], and thus
can be learned more efficiently in lower cognitive load activities
such as code reading as compared to code writing [25].

2.2 Peer grading

Peer grading, also referred to as peer assessment, is an assessment
method where students evaluate other students’ work to provide
feedback, typically in the form of a numeric rating. Prior research
suggests that peer grading is valid when compared to instructor
grading. Specifically, Falchikov and Goldfinch conducted a meta-
analysis of 48 studies published from 1959 to 1999 that focused on
higher education [6]. These studies cover a wide range of subjects
that include natural sciences, social sciences, engineering, medicine,
and business. Falchikov and Goldfinch found that the overall cor-
relation between student-assigned scores and instructor-assigned
scores is 0.69. Similar results in other contexts have also been re-
ported. For example, Sadler and Good reported correlations of 0.91
to 0.94 in the context of secondary education [23]; Luo et al. re-
ported a correlation of 0.62 in a MOOC [14]; Price et al. reported
correlations of 0.89 to 0.91 in a guided-inquiry conceptual physics
course [20].

Various attempts have been made to make peer grading more
reliable. More complex methods that account for students’ bias
and reliability have been proposed to replace taking the mean
or median of students’ ratings [9, 19]. Some researchers suggest
using peer ranking because ranking responses is an easier task
than assigning numerical values, which could lead to more reliable
results [21, 27]. Including calibration questions is another useful
technique. Students will either receive feedback on the calibration
questions directly, or the information can be used to compute the
final grade. This technique is adopted by widely used peer grading
systems such as Calibrated Peer Review and peerScholar [18, 22].

3 METHODS

3.1 EipE grading

From past experience of grading EipE questions [2], we noticed
that students’ responses can generally fit into four categories, as
exemplified in Table 1: (a) descriptions that correctly summarize
the code at a high level unambiguously, (b) descriptions that mis-
represent what the code does, either incorrect or incomplete, (c)
descriptions that are ambiguous, hard to understand, or not even
English, (d) descriptions that correctly describe what the code does,
but are at a low level. We only consider responses that fall under (a)
as correct, and would like students to recognize the three common
errors.

3.2 Course context

We developed and deployed the EipE peer-grading activities in
an introductory CS course for non-technical majors at a large U.S.
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Figure 2: Workflow of 1 round of peer-grading activity.

university during Spring 2021. This large-enrollment course (capped
at 750 students) introduces basic principles of programming in
both Python and Excel to a population largely without any prior
programming experience.

To familiarize and train students with peer-grading EipE ques-
tions, the instructor of the course asked students example peer-
grading EipE questions covering all categories in Table 1 as clicker
questions during lectures twice throughout the semester. The in-
structor elaborated on why a particular response belongs to the
designated category after each of these questions.

3.3 Workflow

We implemented the peer-grading EipE activities in the same online
system that students use for their homework [28]. A complete round
of peer-grading EipE activity had exactly one piece of code and
two phases of assignments, as illustrated in Figure 2. In the first
phase, we chose a piece of code for the round and then wrote an
EipE question for that piece of code, with the additional notice
in the question that responses to the question were going to be
peer-graded. This question was then added to the regular weekly
homework assignment. An example of a question in the first phase
is shown in Figure 1.

In the second phase, we constructed a peer-grading assignment
consisting of only peer-grading multiple-choice questions of the
format shown in Figure 3. The question presented the same piece
of code and a response that students need to categorize into one of
the four categories from Table 1. A typical peer-grading assignment
would have a total of 16 such questions.

The process for constructing each set of these 16 questions was as
follows. After the deadline of the corresponding regular homework,
one TA would pull all the last submissions to the EipE question
made before the homework deadline. The same TA then manually
curated 10 responses for each of the four response categories, mostly
by taking student responses unchanged if possible. If not enough
unchanged responses were found under a category, the TA would
tweak student responses to fit the target category (without replacing
the original). If tweaking student responses was still not enough,
the TA would write an appropriate response from scratch. These 10
curated responses per category were then checked by another TA
to verify that they unambiguously belonged to the target category.

Any of the curated responses that failed the check would then be
replaced by the first TA until all 40 responses passed the check. We
then randomly split each of the 10 responses into 2 groups of 5, and
constructed 1 calibration question for each of the groups. This gave
us a total of 8 calibration questions, 2 for each category, where each
question would randomly draw 1 response out of the group of 5
responses for each student. The rest of the student responses that
were not identical to any of the 40 curated responses were then
randomly split into 8 groups, each of which was used to construct
a non-calibration question, where each question would randomly
draw 1 response out of the group of responses it was associated
with for each student. This process results in 8 calibration questions
and 8 non-calibration questions.

The calibration questions were introduced to measure each stu-
dent’s ability to grade according to our standard, allowing us to
identify students who were either too lenient or too strict. We did
not inform students of the existence of the calibration questions,
and all 16 questions were displayed to each student in a different
random order so that it would be hard for students to ascertain
which questions were calibration questions even if they were aware
of them. Unlike the EipE question in the first phase which was
optional because the regular homework was designed in a way
such that students don’t have to answer all questions to obtain full
credit, every question in the peer grading assignment was required
for full credit. In total, students can earn 0.2% worth of course credit
from the EipE questions in the first phase and 1.1% worth of course
credit from the questions in the second phase.

4 PEER-GRADING ALGORITHM

For each round of the peer-grading activity, we wanted to auto-
matically compute credit for both the EipE question in the regular
homework and the peer-grading assignment. The algorithm that
we developed is based on Bayesian inference, which yields a proba-
bility distribution over the four response categories for each of the
responses to the EipE question. The main motivation for this algo-
rithm is to take into account how students performed on calibration
questions as a way to obtain a more reliable result in a mathemat-
ically rigorous (non-heuristic) way. Credit for both assignments
were then automatically assigned using a heuristic based on the
distribution which allows for partial credit.



Assume that x is a list of numbers.

def f(x):
z2=0
for y in x:
ify %2 == 1:
z=2z+Yy
return z

Evaluate whether the answer below is a short, high-level, English-language description of the
code in the highlighted region above.

increment the sum of z by value y if y is even
(a) CORRECT: a clear, correct, high-level answer @
(b) INCORRECT: functionally incorrect or incomplete @
(c) INCORRECT: ambiguous, not understandable, or garbage @

(d) INCORRECT: too low level @

Figure 3: An example peer-grading question.

We distinguish these three incorrect categories because we’ve
found that learning to write a response that is complete, unam-
biguous, and at a high-level can be challenging for our students.
Often they quickly master one or two of these criteria, but strug-
gle to understand our expectations in the other dimensions. Our
hope is that by evaluating other students’ work using this rubric,
the students will better understand our expectations and learn to
construct answers that warrant full credit.

4.1 Bayesian inference

Given a response, we would like to compute a distribution over the
four categories, so that it can be used heuristically later to assign
credit. Let X € {a, b, ¢, d} be the random variable that represents
which category the response belongs to. We have a set of students
who have voted on this response in the peer-grading assignment.
Denote the size of the set as n, and let 51, So,...,S, € {a,b,c,d} be
the set of random variables, with S; being the response category
chosen by the ith student. We denote the observed students votes
as 1, 82, . . ., Sp. The values that we are interested in are

PX=y|S1=s1,S2=52, ..., Sn=1sn) (1)

for y € {a,b,c,d}, which are the probabilities that the response
belongs to category y given the student votes.
By Bayes’ theorem we know that Equation 1 is equivalent to

P(S1=s1,8 =52, ..., Sn=spn | X=y) PX =1y)
P(Slzsl, 52252, ey Sn:s,,) ’

@

Since the denominator is the same regardless of which value y takes,
we only need to consider the numerator for the purpose of comput-
ing a probability distribution among the four categories. The right
term P(X = y) is the prior probability of an arbitrary response be-
longing to category y. It can be estimated by manually categorizing
a small sample (50-100) of student responses to the EipE question.
The left term P(S1 = s1, S2 =2, ..., Sp =sp | X = y) can be fur-
ther broken down by applying the naive Bayes assumption, which
states that each student’s vote is independent of other students.

This simplifies the left term to

PS1=s1|X=y) P(S2=52|X=y) ... P(Sp=sn| X =1y).

®)
Ideally, we would like to know P(S; = z | X = y) for every pair
of (z,y) € {a,b,c,d} X {a,b,c,d}. However, since we only had 2
calibration questions per category, obtaining reliable estimates of
them is unrealistic. What we can estimate well from the calibration
questions is the probability that a particular student will agree with
the ground truth category, denoted as P(S; = X). When z = y, we
simply let P(S; = z | X = y) take the value of P(S; = X) since
the student agrees with which category the response belong to.
When z # y, we split the remaining probability among the other
categories proportional to the probability of the student voting for
each of the remaining categories. This approach can be formulated
as follows:

DS = s | X =y P(S; =X) ifsi =y,
(Z—S,| _y)_ (l_P(Sl:X))le’(gESZlS:I)y) ifsiiy,
(4)

where P(S; = z) is the probability that the ith student will vote for
category z.

We take P(S; = X) = a,-lflj,-l+2 where a;, b; are the number of
agreements and disagreements of the ith student on calibration
questions for the relevant category. This formulation is derived
from Bayesian inference on a Beta distribution with the assumption
that without any evidence, the student’s probability of agreement
follows a Beta(1, 1) distribution. As for P(S; = z), we simply sub-
stitute the overall probability of students voting z for questions in
the peer-grading assignment. That is, we counted the occurrences
of z being voted among all students on all peer-grading questions
in the round of EipE activity, and divided it by the total number of
votes.

Finally, we substitute all the values and compute

P(S1=s11X=y) ... PSn=sn | X=9) PX=y) (5

for eachy € {a, b, c,d}. This gives us a weight for each category and
normalizing them to have sum 1 gives the probability distribution
we want over the response categories.

4.2 Heuristic for awarding partial credit

Given the probability distribution computed with the proposed
method above, we would like to be able to give partial credit for
both the EipE question in the regular homework and the questions
in the peer-grading assignment. Since assigning partial credit needs
to take practical concerns such as overall score distribution into
account, there isn’t a mathematically sound way to model it. We
therefore used the heuristic below.

We would like to assign a grade to a free response answers in the
regular homework “proportional” to how dominant the response
was categorized as correct in the peer-grading assignment. Specifi-
cally, denote the probabilities over the categories for a particular
response computed by the Bayesian method as pg, pp, pe, pg- We
first computed r = m. We gave 100% credit if r is 1,
75% credit if r is greater than 0.75, 50% credit if r is greater than
0.5, 25% credit if r is greater than 0.25, and no credit otherwise. For



Round Round 1

Round 2 | Round 3 | Round 4

Fraction of students 54.7%

35.7% 43.9% 36.2%

Table 2: Fraction of students that attempted the EipE question in the first phase.

Round Round 1 Round 2
Category [a b ¢ dfa b
TA 1 6 8 2 519 7 0
TA 2 9 7 9 719 9 9
TA 3 8§ 8 8 719 8 8
TA 4 9 9 1 39 10 O

Round 3 Round 4
d|la b ¢ dla b ¢ d
10(100 6 2 09 9 2 1
8110 4 10 6|9 7 7 5
7 9 1 9 3|9 7 7 4
7110 6 1 119 9 2 0

Table 3: Number of TA agreements with designated category for calibration responses.

example, if the probabilities were 0.22, 0.40, 0.28, 0.10, then r = 0.55
and the student would receive 50% credit.

For the peer-grading assignment, we would like to award credit
to a student based on how dominant the category the student picked
is among all students who graded the same response. We divide the
credit calculation into two equal portions. In the first portion, we
award credit strictly based on the dominance of the category the
student picked. For example, if the majority of students think that
the response should be labeled b and the student picked c, then the
student won’t receive much credit for this portion. However, we
would still like to award the student some credits because the stu-
dent agreed with the majority that the response is incorrect, and this
is what the second portion aims to achieve. Specifically, given the

probabilities pg, pp, pe, pq and the ith student that has voted s;, we
Ps; Pa 1si:a + (Pb+Pc+Pd) 1si#a

max (pa,pb:Pe.Pd) max (pa, Py+pe+pPd)

where 15,-4 is an indicator that evaluates to 1 when s; = a and

0 otherwise. We chose r; to be a binary version of r; obtained
by grouping the “incorrect” categories b, ¢, d. Finally, we gave 50%
credit if r; is greater than 0.75, 25% credit if greater than 0.5, 12.5%
credit if greater than 0.25, and no credit otherwise. We do the same
for ry, and the sum of the two was the final credit given to the ith
student. For example, if the probabilities were 0.20, 0.32, 0.40, 0.08
and the student voted on b, then r; = 0.8, 3 = 1 and the student
would receive 100% credit.

computed r{ = and ry =

5 RESULTS

A total of four rounds of peer-grading EipE activities were admin-
istered in the later half of the semester. The fraction of students
answering the EipE question in the first phase for the four rounds
decreased as the semester went on as shown in Table 2. This was ex-
pected because the EipE questions were the only type of questions
that didn’t have instant feedback when a submission was made.
Given that the regular homework was designed in such a way that
students didn’t have to answer all questions to obtain full credit,
it was only reasonable that students chose to simply ignore the
EipE question and do other questions to ensure full credit for the
homework.

At the end of the semester, four TAs (including the two that were
responsible for the calibration questions) independently categorized
all of the students’ responses and the manually curated responses
to the four EipE questions. Only 10-20 random example responses
from each round were discussed together by all four TAs before

LY b c

. d

100 - — .
80 A

60 -

Percentage / %

20 A

Round 1 Round 1 Round 2 Round 2 Round 3 Round 3 Round 4 Round 4
TA  student TA  student TA  student TA  student

Figure 4: Raw distribution of votes among the categories by
TAs versus students for each round on non-calibration re-
sponses.

each TA categorized all of the remaining responses independently.
All responses for each of the rounds were randomly shuffled so
that the TAs had no knowledge of which responses were for the
calibration questions. In Table 3 we report the number of matches
each TA had on each category of calibration responses in each
round of peer-grading activities. All four TAs are CS masters/PhDs,
and have been manually grading EipE questions in the course. TA
2 and TA 3 were the two TAs responsible for the curated responses
of the calibration questions, and have worked on research related
to EipE previously. TA 1 and TA 4 have taught the course for more
than one semesters, but haven’t participated in any EipE research.
TA 2 and TA 3 had higher agreement with the designated category
for the calibration responses. One interesting exception is category
b of round 3 where both of them had lower agreement with the
designated categories. In general, the TAs agreed on category a and
b most of the time, and TA 1 and TA 4 had low agreements with
category c and d.

To understand how the TAs’ votes differ from the students’ votes,
we plotted the raw distribution of votes among the four categories of
all non-calibration responses in Figure 4. As the figure shows, TA’s
overall distributions aren’t very different from those of students in
most cases. An interesting observation is that the TA’s distribution



Metric Jensen-Shannon Total Variation Top Match
Round 1 2 3 4 1 2 3 4 1 2 3 4
Unweighted voting | 0.381 0.309 0.373 0.419 | 0.357 0.261 0340 0.411 | 0.662 0.826 0.767 0.541
Weighted voting 0.362 0.279 0.358 0.407 | 0.338 0.230 0.330 0.403 | 0.670 0.826 0.780 0.558
Bayesian 0.356 0.215 0.339 0.425 | 0.382 0.228 0.354 0.476 | 0.681 0.843 0.760 0.609

Table 4: Performance of different methods for computing probability distribution under different metrics for all four rounds.

Bold numbers are the best of the columns.

varies significantly across rounds, suggesting that different EipE
questions had different distributions of student responses among
the categories.

We evaluated how well the proposed Bayesian method can con-
struct a probability distribution over the four categories for each
response by evaluating how close it is to the corresponding TAs’
probability distribution. We included two baseline methods for com-
parison: unweighted voting and weighted voting. The unweighted
voting method simply takes all students’ votes equally to compute
a probability distribution on the response. The weighted voting
method is a heuristic that weighs each student’s vote by a factor
that is equal to the ratio of calibration questions on which the stu-
dent matched the designated categories. We evaluated on three
metrics: Jensen—Shannon, Total Variation, and Top Match, where
the Jensen—-Shannon distance and Total Variation distance are two
commonly used distance metrics for probability distributions where
lower values are better. The Top Match metric finds the categories
with the highest probability in each probability distribution. If they
match, then it evaluates to 1 otherwise it evaluates to 0, so a higher
value is better. In the case when the four TAs are split 50%/50%
on two categories, Top Match will evaluate to 1 as long as the top
category in the students’ distribution is one of the two categories.
We applied these metrics to all responses and then aggregated the
results based on the metric, method, and the round. We reported the
mean for each of these combinations in Table 4, where the bold num-
bers represents the best value of that metric for each round. As the
table shows, the unweighted voting method performed universally
the worst. The Bayesian method is better under Jensen-Shannon
and Top Match, whereas the weighted voting method is better un-
der Total Variation. However, the gap between these two are not
large enough to conclude that one is better or worse.

6 CONCLUSION

In this paper, we reported our experience of running peer grading
on“Explain in plain English” (EipE) questions. We observed that the
overall distributions of votes by students are similar to that of the
TAs’. Both our proposed mathematically rigorous Bayesian method
and a heuristic weighted voting outperform unweighted voting,
suggesting that calibration indeed improves the peer-grading re-
sults. On our dataset the Bayesian method performed similarly with
the heuristic weighted voting.

We believe that peer-graded EipE questions can both reduce the
workload for the course staff and train students on what’s expected
in responses to EipE questions. This would enable EipE questions
to be adopted with less effort, as a common reason that prevents
instructors from using EipE questions is the effort required to grade
them in formative assessments.

In our implementation of peer-grading EipE questions, we cast
the grading problem as a multiple choice question, though in reality
a response can be both functionally incorrect and low level. We
believe this multiple-choice approach is sufficient for the purpose of
giving formative feedback and training students to be aware of the
common pitfalls, though a future direction could be to explore how
to make peer grading work for “check all that apply” questions.
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