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ABSTRACT
We present a new approach to performing program analysis

through profile-guided random generation of instruction traces.
Using hardware support available in commercial processors, we
profile the behavior of individual instructions. Then, in conjunc-
tion with the program binary, we use that information to fabricate
short (1,000-instruction) traces by randomly evaluating branches
in proportion to their profiled behavior.

We demonstrate our technique in the context of critical path
analysis, showing it can achieve the same accuracy as a hardware
critical path predictor, but with lower hardware requirements. Key
to achieving this accuracy is correctly identifying memory depen-
dences in the fabricated trace, for which purpose we use a form of
abstract interpretation to identify aliasing store-load pairs without
explicitly profiling them. We also demonstrate that our approach is
very tolerant of the quality of profile information available.

Categories and Subject Descriptors: I.6.3 [Computing Methodologies]: Simula-
tion and Modeling–Applications; C.0 [Computer Systems Organization]: General–
Hardware/Software Interfaces, Modeling of Computer Architecture

General Terms: Measurement, Performance

Keywords: Instruction Criticality, Profiling, Trace Fabrication

1. INTRODUCTION
Critical path information has been demonstrated to be effective for
reasoning about a machine’s performance bottlenecks [7, 8, 19],
as well as for optimizing complexity-effective implementations of
aggressive microarchitectures [6, 8, 12, 18, 21, 22]. This has lead
to a number of proposals for engineering critical path detectors
and predictors directly into the hardware. However, such schemes
consume a non-trivial amount of silicon (e.g. 14KB in one pro-
posal [8]), require tight integration with the execution core, and
involve a significant amount of switching activity and hence power
consumption. Our thesis is that these costs are avoidable: an online
critical path infrastructure is, to a large extent, superfluous because
instruction criticality can be computed just as effectively offline.

We present a scheme that uses basic profile information, plus
a memory image of a program’s code segment, to fabricate ran-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO’08, April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

1.0

1.1

1.2

1.3

no
rm

al
iz

ed
 ru

nt
im

e

2 Fd Fs Ld Ls 4 Fd Fs Ld Ls 8 Fd Fs Ld Ls

Figure 1. The potential of static criticality. The graph shows the runtime
of 2-, 4- and 8-cluster machines relative to a resource-equivalent 8-wide out-
of-order superscalar. (More details of our simulation infrastructure, and these
performance results, are provided in Section 5.) Bars labeled ‘2’, ‘4’ and ‘8’
show the performance of a standard dependence-based steering policy, which
ignores instruction criticality. The ‘Fd’ and ‘Ld’ bars show the impact of tak-
ing criticality into account, first using the scheme proposed by Fields et al. [8],
and then using the likelihood of criticality (LoC) policies developed by Salverda
and Zilles [18]. Both use dynamic critical path detection and prediction logic in
hardware. The ‘Fs’ and ‘Ls’ bars show static versions of those two schemes,
where each instruction is tagged with a fixed criticality value derived from our
trace fabrication scheme. The unshaded portion of those bars shows the per-
formance implications of not fabricating memory dependences in our traces.

dom traces that are representative of that program’s execution.
Those traces, which are annotated with details on microarchitec-
tural events (e.g. branch mispredictions, cache misses), and which
include memory alias information, are processed by a simple tim-
ing model to identify the static instructions that frequently appear
on the critical path. The resulting criticality information proves to
be just as effective as that derived from a sophisticated online in-
frastructure. For example, Figure 1 shows that, in the context of
clustered microarchitectures, which we use as a vehicle for eval-
uating the efficacy of our scheme, criticality information derived
from our fabricated traces provides 93% of the performance bene-
fits achieved by dynamic, hardware-based critical path predictors.

A high-level view of our proposed infrastructure appears in Fig-
ure 2. Broadly, the scheme comprises two components: trace fab-
rication and trace analysis. The former, which we describe in de-
tail in Section 3, is the more important of the two, since it is the
quality of the traces that we fabricate that ultimately determines
the utility of the criticality information we collect. Those traces
are constructed so as to reflect the same flow of control and the
same dataflow relationships typically observed in a real execution,
both of which are important for correctly distinguishing the instruc-
tions that tend to be critical from those that don’t. Control flow is
fabricated by taking a profile-guided random walk through the ex-
ecutable. Section 3.2 demonstrates the efficacy of this technique.

We use a novel technique for synthesizing memory dependences.
While register dependences can be derived directly from a trace
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Figure 2. Our offline critical path infrastructure.

once control flow has been fabricated, memory-carried depen-
dences — specifically, bypassing store-load pairs — are not ob-
vious from the program itself, nor are they easily profiled. They
are, however, important for accurately computing criticality. The
unshaded portions of the ‘Fs’ and ‘Ls’ bars in Figure 1 show that re-
moving synthesized memory dependences from our traces reduces
the efficacy of the resulting criticality information to the point that
the static schemes now achieve less than 75% of the benefit of their
dynamic counterparts. In Section 3.3, we show how we use an ab-
stract interpretation technique to compute symbolic values for load
and store addresses and, thereby, correctly identify over 95% of all
the aliasing store-load pairs.

The trace analysis component, which we describe in Section 4,
uses a simple timing model to annotate each instruction in the fab-
ricated trace with timestamps reflecting their progress through a
simulated pipeline, one that models, at a high level, the same con-
straints imposed by the host CPU. It also uses profile data to as-
sociate microarchitectural events like branch mispredictions and
cache misses with specific instructions in the trace, in so doing ex-
posing those instructions, together with their backward dataflow
slices, as critical path candidates. The final step — critical path
analysis — simply delineates a critical path through the timing-
annotated trace, for which purpose we use the dependence graph
technique from Fields et al. [8] (described in Section 2.1). The
resulting criticality database records the tendency of each static in-
struction to reside on the critical path.

Though our focus in this paper is on mechanisms for generating
the criticality database offline, it is difficult to evaluate the qual-
ity of that database in the abstract: its efficacy is determined, ul-
timately, by the performance that can be derived from it. As we
noted above, we use for this purpose two criticality-based instruc-
tion steering and scheduling schemes for clustered microarchitec-
tures. Section 5 presents that study.

In addition to validating our trace fabrication approach, our re-
sults implicitly demonstrate two properties of criticality that are
fundamental to the viability of any such offline scheme. First, be-
cause the fabricated criticality is computed without any knowledge
of correlated events in the trace (e.g. branch B is taken if and only
if branch A is taken), we can conclude that such information is
largely unnecessary for computing criticality. Second, there is lit-
tle need for adaptivity in criticality prediction: our trace fabrication
approach computes a single static criticality value for each instruc-
tion, yet it achieves performance that is very close to that achieved
by a hardware predictor. In this regard, we further find that an in-
struction’s criticality is largely independent of program input (data
presented in Section 5), permitting previous program inputs to be
used to predict instruction criticality.

In summary, we make the following contributions in this paper.

1. We propose profile-guided random construction of traces for
program analysis.

2. We demonstrate the use of abstract interpretation to identify
memory aliases.

3. We demonstrate the efficacy of these techniques in the con-
text of critical path prediction.

4. We show that instruction-level criticality tends to be stable
and insensitive to program input.

Though we focus here specifically on critical path prediction, we
believe random trace construction has other applications. It repre-
sents a “sweet spot” between the extremes of detailed microarchi-
tectural simulation and abstract program analysis. With respect to
the former, it can be performed more efficiently and requires nei-
ther building a complete simulator nor having to ensure that a rep-
resentative sample of the program is simulated. With respect to
the latter, it naturally incorporates both microarchitectural and dy-
namic dataflow information into the analysis, which program anal-
ysis does not (easily) capture.

2. BACKGROUND AND MOTIVATION
Informally speaking, the critical path through a program is a se-
quence of instructions whose aggregate execution time constitutes
the runtime of that program. Our focus in this paper is on mech-
anisms for delineating that sequence and, hence, for isolating the
critical instructions in a program. The ability to do so offers numer-
ous benefits. From a performance point of view, knowing which in-
structions are critical permits compiler and hardware optimizations
to be focused so that they target specifically those instructions that
actually affect performance. For example, compilers for statically-
scheduled machines give priority to critical instructions when they
perform their scheduling pass [5]. Analogous techniques have been
proposed for dynamically-scheduled machines. In particular, nu-
merous studies have shown that criticality can be used to good ef-
fect in guiding instruction steering and dynamic scheduling policies
in clustered superscalars [8, 18, 21].

In addition to those performance-enhancing benefits, criticality
can play an important role in achieving more effective balancing
of the various trade-offs between a design’s performance potential
and its complexity and power constraints. For example, a designer
might reduce the clock frequency of some parts of the execution
pipeline (to reduce power), and use instruction criticality to en-
sure that performance-critical instructions are preferentially allot-
ted issue slots at the faster functional units [6, 20]. In so doing,
non-critical instructions will be penalized, but since these typically
exhibit some degree of slack, overall performance need not suffer.

More recent work has also demonstrated the utility of critical-
ity as an analytical tool for diagnosing performance bottlenecks in
novel microarchitectures [19]. The ability to delineate the criti-
cal path enables precise and quantitative attribution of the observed
runtime to just those aspects of performance that are actually re-
sponsible. The more traditional approach of using aggregate met-
rics (like cache miss rate, for example) often fail to expose the most
important factors responsible for performance and, more impor-
tantly, do not offer insight into the relative contribution of each
factor to the observed runtime.

2.1 Defining criticality
Exactly what constitutes the critical path through a program de-
pends very much on the context in which criticality is being used.
In a statically-scheduled machine, for example, the critical path is
induced by the schedule generated by the compiler, which is, in
turn, dictated by the longest dataflow chain in each scheduling re-
gion. By contrast, in dynamically-scheduled machines — the fo-
cus of this paper — criticality is a function of a program’s dynamic
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Figure 3. Critical path model. The dependence graph on the left models a sequence of 9 consecutive instructions (i1 through i9) in an executing program. The
table on the right describes the microarchitectural and dataflow constraints captured by that graph. In this example, the underlying machine has a 4-entry ROB
(shaded region), so C–D edges, which capture the effects of finite window size, connect every 4th instruction. Instruction i7, a mispredicted branch, induces an E–D
edge to instruction i8 to reflect the constraint that correct path instructions cannot be dispatched into the window until a misprediction is resolved. The critical path
through this code sequence is highlighted with the thicker dependence edges. All edges are labeled with their latencies.

dataflow patterns and their interaction with the underlying microar-
chitecture. Whereas the critical path in a statically-scheduled con-
text is constant throughout execution, it can frequently change in a
dynamically-scheduled context: when no microarchitectural events
occur, the longest dataflow chain will be critical, but cache misses
and branch mispredictions can elongate otherwise short dataflow
chains, making them critical. In general, execution in a dynamic
machine comprises a number of potentially-critical paths, their in-
terplay being determined by events at runtime.

Though other studies have acknowledged the complexity of such
interactions, Fields et al. were the first to tackle them directly and
to characterize them precisely [8]. Our work focuses on their no-
tion of criticality. Figure 3 depicts the dependence graph model
upon which they build their critical path concepts. Very briefly, the
model defines three main events for each instruction as it moves
through the machine’s pipeline: entry into the out-of-order window
(dispatch), execution at a functional unit (execute), and exit from
the out-of-order window (commit). Each dynamic instruction in a
program execution thus contributes three nodes to the dependence
graph; edges between those nodes capture the various dependences
that constrain the order and time at which the corresponding events
can occur. With this dependence graph in hand, the critical path
is easy to define precisely: it is the longest path from the first ‘D’
node to the last ‘C’ node in the graph.

2.2 Delineating the critical path
The dependence graph model is inherently postmortem in nature: it
can only identify the critical path for an execution that has already
occurred. To render it a more practical tool, Fields et al. used it
as the basis for a token-based critical path detector that could be
incorporated into the processor pipeline [8]. This detects dynamic
instructions whose execution (i.e. the E-node in Figure 3) resides
on the critical path. The resulting outcomes are used to train a crit-
ical path predictor, a PC-indexed table of saturating counters. The
predictor is analogous to a counter-based branch predictor, in the
sense that it aggregates the past behavior of each static instruction
into a binary — in this case, a critical/not critical — decision for
subsequent dynamic instances. Fields et al. evaluate their scheme
by using critical path predictions to guide instruction steering and
scheduling decisions in clustered superscalar machines. More re-
cent work by Salverda and Zilles extended those results by showing
that mapping dynamic behavior onto a binary notion of criticality is
too coarse-grained in a number of cases [18]. They propose instead

a likelihood of criticality (LoC) predictor that records the fraction
of an instruction’s instances that are critical, and show likewise how
LoC can further improve the performance of clustered machines.

These online schemes are appealing in two respects. First, they
are flexible enough to adapt to changes in program behavior, and
can therefore improve the efficacy of whatever pipeline optimiza-
tions use their criticality predictions. Second, since those optimiza-
tions will frequently change the critical path (e.g. value prediction
can shorten it), an online scheme provides the ability to respond to
the very optimizations it drives. In spite of these benefits, however,
an online infrastructure comes at a cost. The token-based predictor,
for example, requires a multi-ported 1.5KB array for detecting crit-
ical instructions, plus modifications to the execution core to record
very detailed information on the relative timing of various events in
an instruction’s lifetime; and the predictor itself requires a table of
16K 6-bit saturating counters. Viewed in this light, an online criti-
cal path infrastructure incurs a significant cost — enough, perhaps,
to mitigate the benefits of the criticality-aware optimizations it en-
ables. Our principal claim in this work is that sophisticated online
infrastructures are superfluous. Accurate criticality information can
be derived offline using a profile-guided synthetic trace fabrication
scheme, the details of which we present in Sections 3 and 4.

2.3 Related work in synthetic traces
Given that profiled program behavior plays a central role in our
infrastructure, our approach shares a number of similarities with
previous work that uses profile data to reproduce statistically sim-
ilar behavior in an offline context. For example, statistical mod-
eling [9, 14] and statistical simulation [15, 16] both make use of
probabilistic models to reproduce, in aggregate, the kind of behav-
ior observed by the real program. While we likewise exploit prob-
abilistic properties of program behavior, we differ fundamentally
from those prior studies in that an aggregate result is not sufficient
for our purposes. Specifically, we are not interested in reproducing
an IPC figure offline, but rather in examining dynamic sequences
of instructions that are representative of the real execution.

Our work is therefore most closely related to the shotgun pro-
filing technique proposed by Fields et al. [7]. That scheme also
uses profiled behavior to feed an offline analysis of instruction
criticality. However, whereas we profile only very basic dynamic
events (details in the next section), shotgun profiling snapshots very
low-level events pertaining to an instruction’s progress through the
pipeline. Though simpler than a full online critical path detection
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infrastructure, shotgun profiling still constitutes a substantial addi-
tion to the pipeline. We obviate the need for that hardware by re-
lying much more on the original program binary to ensure that our
traces embed the same dataflow patterns seen in a real execution.

3. TRACE FABRICATION
In this section, we describe our trace fabrication infrastructure in
detail. We noted earlier that it is important that we produce detailed
instruction traces that are representative of those observed in a real
execution. By this, we mean that the traces we generate should em-
bed the same dataflow patterns that are typically present in a real
execution and, more importantly, that they facilitate mapping the
important dynamic dataflow patterns back onto the static instruc-
tions that induce them. This requirement is conveniently viewed
as comprising two parts. The first, and the more important of the
two, is control flow fabrication. Section 3.2 describes how we use
a profile-guided “random walk” through the program binary to fab-
ricate the synthetic flow of control. The second component is data
dependence fabrication, which we describe in Section 3.3. Our
focus there is on fabricating dependences through memory, since
dependences through registers are naturally induced by the control
flow we fabricate. Since profile data seeds this whole process, we
begin in Section 3.1 with a brief discussion of the profiling infras-
tructure we rely on.

3.1 Profiling infrastructure
Our trace fabrication infrastructure is driven by a database of pro-
filed program behavior (recall Figure 2). Since that database con-
tains information on microarchitectural events like cache misses
and branch mispredictions, we rely on hardware support for profil-
ing. Our requirements in this regard are modest, however. We need
to precisely attribute events to the instructions that cause them, but
this is a feature already available in many commercial microproces-
sors [4, 11, 13], as well as proposed for AMD’s recently announced
Lightweight Profiling [1]. We will therefore not describe here ex-
actly how the profile information is collected; more important is the
specific information we rely on.

Figure 4 shows the program properties we profile. The bulk of
our profile database is just a histogram of sampled PCs. In addition
to that, we record counts of cache misses and branch mispredictions
for each static load and branch that we sample. These are used by
the trace analysis part of our infrastructure (Section 4). We also
maintain a histogram of branch targets for each branch instruction
that we sample. This is used by the control flow fabrication logic
described in the next sub-section.

Algorithm 1 Control flow fabrication
1: callStack← ∅
2: currPC← GenerateRandomSeed()
3:
4: for i← 0 to TRACELET_LENGTH do
5: currInst← ReadFromBinary( currPC )
6: nextPC← currPC + 4
7:
8: if currInst is a call instruction then
9: callStack.push( nextPC )

10: nextPC← GuessTarget( currPC )
11: else if currInst is a return instruction then
12: nextPC← ( callStack.empty() ? GuessTarget(currPC) : callStack.pop() )
13: else if currInst is a branch or jump instruction then
14: nextPC← GuessTarget( currPC )
15: end if
16:
17: AddToTrace( currInst )
18: currPC← nextPC
19: end for

We impose two requirements on our profile data. First, like any
profile-based technique, we require that a profile cover the pro-
gram’s code footprint with enough samples that we can readily
identify the hot portions of the code. We characterize the sensitiv-
ity of our results to the quantity of profile information in Section 5.
In principle, the requisite sample count can be achieved either by
profiling over a short period of time with a high sampling rate or
over a longer period of time with a low sampling rate. Second, we
require that sampling be unbiased, in the sense that the number of
samples we take for a given static PC is proportional to the rela-
tive frequency at which that instruction executes. This ensures that
our trace fabrication logic will produce traces whose code coverage
corresponds to that in a real execution.

3.2 Control flow fabrication
The fidelity of the criticality information we collect is determined,
first and foremost, by the extent to which our traces faithfully repro-
duce the control flow observed in the real program. This is because
control flow induces dataflow, and dataflow has a first-order effect
on the critical path. Put another way, if we get the control flow
right, we immediately get most of the dataflow right, as register
dataflow is derived directly from control flow.

3.2.1 Flow fabrication logic
Algorithm 1 shows the main steps in our flow fabrication logic.
We operate at a granularity of tracelets — short sequences of
instructions seeded by randomly picking a starting PC from the
profile database. The trace analysis component of our infrastruc-
ture, which we describe in Section 4, repeatedly consumes these
tracelets in order to delineate the critical path.

Random seeding. The GenerateRandomSeed function used
by Algorithm 1 (line 2) is responsible for picking the PC that will
seed the tracelet generation. It operates by randomly selecting a
record from the profile database, weighting the choice of an in-
struction by its sample count. In this way, we tend to seed traces in
hot code regions. The ensuing control flow fabrication, described
next, ensures that tracelets tend also to remain in hot regions.

Random walking. The for-loop in Algorithm 1 (lines 4–19) con-
stitutes a profile-guided random walk through the program binary.
We use the program binary to guide sequential control flow (lines 5
and 6) and the profile database to randomly pick the successors of
control flow instructions (lines 8–15). For function return in-
structions (line 12), we maintain a simple call stack from which we
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pop target addresses; call instructions push their successor onto
this stack (line 9). In this way, we establish semantically mean-
ingful control flow across function call boundaries. The target ad-
dresses for call instructions (line 10), direct and indirect jump
(unconditional) instructions, and conditional branch instructions
(line 14), are all computed by the GuessTarget function.1 Anal-
ogous to random seed generation, GuessTarget randomly picks
a target PC from among all the profiled targets for the given con-
trol flow instruction, weighting the choice by those targets’ sample
counts.

3.2.2 Discussion
The above logic ensures that our tracelets are very likely to mimic
real program control flow, repeatedly iterating through hot loops
and tending to follow the most biased conditional paths within
them. To evaluate the extent to which this is indeed happening,
we draw on previous work in the area of path profiling. We use a
path profile as a succinct measure of the control flow embedded in a
given trace, and hence for comparing our fabricated traces to those
from a real execution: the more closely the two match, the more ac-
curately our traces reflect real execution. We follow the approach
taken by Ball and Larus, who define a path as an acyclic sequence
of intra-procedural basic blocks [3]. Unlike them, however, we do
not use the so-called Wall weight-matching metric to compare two
path profiles, preferring instead to use the overlap metric employed
by Arnold and Ryder [2]. This is a more intuitive means for com-
paring two path profiles, and it is readily extended to also quantify
the accuracy of dataflow dependence fabrication (Section 3.3).

Very briefly, the overlap metric is defined as follows. The flow
along path p in path profile P , denoted f(p, P ), is the the total
number of times path p occurs in profile P . The coverage of p in
P , which is the fraction of total flow in P that can be attributed
to p, is then given by c(p, P ) = f(p, P )/f(P ), where f(P ) =P

p∈P f(p, P ). The flow overlap metric, denoted Mf , compares
real-trace path profile Pr to fabricated-trace profile Pf as follows:
Mf (Pr, Pf ) =

P
p∈Pr

min{c(p, Pr), c(p, Pf )}. This quantifies
the extent to which the fabricated profile agrees with the real one
on the fraction of total flow that is attributable to each of the real
profile’s constituent paths. Two identical path profiles will yield an
overlap value of exactly 1. Any differences between the two will
yield a value less than that: too little (or no) coverage of a given
path by the fabricated trace will be captured by the min operation;
too much coverage will be capped by the min , and will ultimately
be penalized by the ensuing deficit of flow along other paths.
1 Unconditional, direct (PC-relative) jumps are a special case. These have a statically-
fixed target instruction that can be discovered from the binary.

Figure 5 plots the value of the overlap metric for the SPEC In-
teger benchmarks. That data is collected by first generating a real
instruction trace (one derived from a program execution) of a given
length. From this, we compute Pr , real-trace path profile. In addi-
tion, we generate a profile database for the real trace, and use that
to fabricate a collection of tracelets whose aggregate length equals
the size of the real trace; from this, we compute Pf . The data in
Figure 5 shows the value of Mf (Pr, Pf ). Since we compare the
fabricated trace to the same one from which its profile database
is derived, these results constitute a form of self-training. We do
so at this point to avoid clouding the results with artifacts of pro-
filing specifics, but we will show later in the paper that removing
these idealized assumptions has little impact on our results. The
graph confirms that our fabricated traces are remarkably effective
at reproducing the control flow observed in a real execution. On
average, close to 95% of the real trace’s flow is matched by the
fabricated traces. This data is consistent with results published by
Ball et al. [3], who found that a greedy strategy for deriving a path
profile from an edge profile (i.e. a profile of branch targets, like
ours), is able to very closely match the real path profile. This is
testament to the highly-biased nature of most control flow.

The graph also shows that longer tracelets marginally improve
the accuracy of the path profile, but only to a point. The ‘1m’ bars,
for example, show that very long tracelets generally yield a worse
overlap value, and in some cases show marked degradations (gcc
and parser). This is because, as tracelets grow in size, the total
number of times we reseed the fabrication logic is reduced. Using
fewer seeds increases the chance that our random walk ventures
down a cold path and remains there too long. This can distort the
extent to which our traces correctly reflect the relative time spent in
each code region, as well as the likelihood that they properly cover
all the executed regions. Our approach of repeatedly reseeding the
flow fabrication is key to avoiding such problems. In this regard,
very short tracelets are most appealing, but we must balance that
requirement against the need for sufficiently long traces to capture
all the dataflow and microarchitectural constraints that have bearing
on the critical path. Tracelets shorter than the machine’s ROB size,
for example, will fail to capture the C–D edges in the dependence
graph model. From our empirical evaluation of various alternatives
for tracelet length, we find that 1,000 instructions strikes a good
balance between the above factors, as well as minimizes the num-
ber of instructions we have to analyze before we obtain sufficiently
accurate criticality profiles. We will therefore confine our analysis
in the remainder of the paper to tracelets of 1,000 instructions each.

Figure 5 also shows that our flow fabrication is not uniformly
successful across all benchmarks. The eon program, in particular,
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node_t

pred child
data

node_t

pred child
data

(a) Data layout (b) Code

dataflow

Figure 8. Correlated addresses in mcf. (a) The doubly-
linked node_t data structure induces mutually dependent val-
ues in the pred and child fields. (b) Simplified version of
an inner loop in hot method refresh_potential, which it-
erates over the linked structure, updating each node’s fields
based on the results of computation on its predecessor.

stands out. In that case, the less effective path coverage arises be-
cause of correlated control flow, which our fabrication logic does
not take into account. Figure 6 shows why this is a problem in eon.
Only a subset of all possible paths is observed during execution of
this code, but our trace fabrication approach tends to enumerate
all of them, thus watering down the path profile. These effects are
comparatively rare, however, and, as we shall see, they tend to have
little impact on the integrity of the criticality we extract from our
fabricated traces.

3.3 Data dependence fabrication
From a critical path point of view, dataflow dependences through
the register file are by far the most important. Because we fabri-
cate traces based on actual instructions read from the binary (Al-
gorithm 1, line 5), we faithfully model all intra-block register file
dataflow. And because most of the control flow is representative of
real execution, inter-block dataflow is mostly accurate too.

A more challenging problem is posed by dataflow through mem-
ory. As we saw in Figure 1, capturing the main store-to-load com-
munication exhibited by the program is important for accurate iden-
tification of critical instructions. We therefore require a mechanism
for fabricating aliasing behavior in our traces. To be clear, we make
a distinction between memory aliasing and memory bypassing. A
store and load alias if they touch the same address and there is no
intervening store to that address; a store bypasses to a load if the
pair alias and the store is still in the pipeline when the load issues.
That is, bypassing is a pipeline-specific notion; aliasing is a prop-
erty of the program. Our goal here is to generate synthetic alias
information, not bypass information. The trace analysis logic (Sec-
tion 4) uses that aliasing information, together with knowledge of
pipeline parameters, to decide whether a given store should bypass
to a given load.

In the absence of actual input data, we cannot, in general, know
the exact memory addresses generated by a program. However,
what matters most in determining memory aliasing behavior is not
the addresses themselves, but simply whether two addresses are the
same. The approach we take, therefore, is to perform an abstract
execution of the tracelet using arbitrary values. Logically, we main-
tain a simple record of the machine’s architected state, initializing
every register and memory location with a random value, and then
emulate the execution of each non-control flow instruction in the
tracelet.2 We record the “symbolic” addresses thus generated for
each memory operation and later compare those values to identify
aliasing store-load pairs.

2 In practice, we only generate random values on demand, when a storage location
that has not yet been written by the tracelet is read for the first time.

Proceeding in this way, computation within the trace is internally
consistent; it is merely seeded with random input. Loads and stores
that tend to alias in a real execution are therefore liable to also alias
in our symbolic execution, albeit via meaningless addresses. Callee
saved and restored registers, in particular, are easily detected: we
seed the stack pointer with a random value, and subsequent saves
and restores, which use fixed offsets relative to that random value,
will correctly alias. A number of other aliasing patterns are likewise
caught.

To get a feel for the efficacy of this technique, we develop the
notion of an alias profile for an instruction trace. This is simply
a histogram that associates a count with each static load-store pair
that participated in a dynamic aliasing. If (st , ld) is one such pair,
we define c(st , ld , A) to be the fraction of all dynamic aliasing in-
stances in alias profile A that are accounted for by that pair. This
leads naturally to an aliasing overlap metric, the analog of the path
profile metric Mf . Specifically, for real and fabricated alias pro-
files Ar and Af , we define the alias overlap metric as follows:
Ma(Ar, Af ) =

P
(st,ld)∈Ar

min{c(st , ld , Ar), c(st , ld , Af )}.
Figure 7 plots the value of this metric for the alias profiles gener-

ated by our symbolic execution technique.3 Overall, the data shows
that the symbolic execution technique is remarkably effective at re-
producing almost all the aliasing behavior observed in a real ex-
ecution, with the overlap metric averaging about 95% across all
the benchmarks. Moreover, the efficacy of the technique extends
to large regions of contiguous instructions, rendering it useful for
studying the effects of aliasing even in large-window machines.

Figure 7 exposes mcf as an outlier — the only benchmark to
consistently score below 90%. Figure 8 shows why this is occur-
ring. The problem here is analogous to the correlated control flow
problem: certain values in a program’s data structures are corre-
lated, in the sense that program semantics establish some form of
relationship between them. This becomes important for aliasing
when those data values are pointers. In the mcf code, such a rela-
tionship exists between the pred and child fields of the nodes in
a doubly-linked data structure.4 With our symbolic execution tech-
nique, we seed values for these two pointer fields randomly, so we
fail to establish any relationship between them. As Figure 8 shows,
one of mcf’s hot loops performs an update to this linked structure,

3 Actually, we compute a bi-directional overlap, since the metric, as defined, will
falsely report good overlap if, for example, an alias profile deems all load-store pairs
to always have aliased. To obviate such problems, Figure 7 plots the average of
Ma(Ar, Af ) and Ma(Af , Ar). The path profile overlap is not prone to this prob-
lem because total flow in the two profiles is fixed, so too much flow along one path
will always be compensated for by less flow elsewhere; not so with alias profiles.
4 Specifically, the two pointer fields are mutually referential: if n points to a non-leaf
node, then it will always be the case that n->child->pred == n.
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doing so in such a way that updates to the fields of one node are
used during the computation on the child node in the subsequent
loop iteration. That is, there is frequent store-to-load bypassing
across successive loop iterations. Fortunately, scenarios such as
this are comparatively rare in the programs we studied, so they do
not perturb our criticality analysis very much.

4. TRACE ANALYSIS
In this short section, we briefly describe trace analysis, the second
component of our offline infrastructure. Recalling Figure 2, this
comprises two main components: the timing model and the critical
path analyser.

4.1 Timing model
The timing model consumes one tracelet at a time. Its task is to an-
notate each instruction with timing information to mimic the effects
of that instruction’s progress through a simulated pipeline. Those
timestamps reflect the manner in which the fabricated dataflow is
likely to interact with the low-level microarchitectural constraints
imposed by the host CPU. It is that interaction which ultimately
determines the critical path.

The principal requirement we impose on the timing model is that
it faithfully model the microarchitecture of the host CPU. This does
not mean we need a very detailed microarchitectural simulator, but
rather that we need to capture the first-order effects that have the
most influence on the critical path. Specifically, we need to model
the machine constraints captured by the dependence graph shown
earlier in Figure 3. This leads to the high-level model depicted in
Figure 9, which represents a typical out-of-order superscalar ma-
chine. Our timing model is essentially a simple trace-driven sim-
ulator for an out-of-order machine. The main microarchitectural
constraints we capture relate to peak instruction supply (fetch) rate,
issue bandwidth (different rates for different instruction types), and
peak commit bandwidth. We also model the effects of finite buffer-
ing capacity in the machine’s out-of-order window. Instruction exe-
cution latencies are also modeled, but not necessarily true to the la-
tencies imposed on the host CPU. Rather, the objective is to capture
the effects of long-latency floating point operations and variable-
latency load instructions, and to distinguish those from single-cycle
integer operations.

Also shown in Figure 9 is the use of profile data to inject branch
mispredictions and cache misses into the trace. These microarchi-
tectural events have a strong influence over which static instruc-
tions tend to appear on the critical path. The timing model cap-
tures their effects by randomly selecting the dynamic instances of
branch (load) instructions that will incur a misprediction (cache
miss). This is done as per the profiled behavior of the correspond-
ing static instructions. That is, branches that are frequently mispre-
dicted in the real execution will tend to incur many simulated mis-
predictions in the timing model; likewise for cache-missing loads.

We simulate a branch misprediction simply by stalling instruction
supply for a fixed number of cycles. Simulated cache misses result
in load instructions incurring a fixed number of cycles of additional
latency.

Our approach of randomly deciding when branch mispredictions
and cache misses occur will, of course, miss the effects of correla-
tion among such events, as well as any tendency they might have
to cluster in time. However, these effects are of secondary impor-
tance. What counts most is that branches that tend to mispredict,
and loads that tend to miss in the cache, are frequently flagged as
such in the simulated trace, and hence that they and their backward
dataflow slices are liable to be exposed on the critical path.

In the empirical work we present in Section 5, where we evaluate
our criticality infrastructure in the context of clustered superscalar
machines, the CPU we use in our timing model is slightly different
from the one depicted in Figure 9. In particular, its issue queue is
partitioned, and dataflow between those partitions incurs a global
communication penalty. We likewise need to model an instruc-
tion steering policy for distributing instructions among the clusters.
While these components add a little more complexity to the timing
model, they do not fundamentally change the basic infrastructure
described above.

4.2 Critical path analysis
As we noted in Section 2, we use the dependence graph model
from Fields et al. to delineate the critical path. We conduct the
analysis on a per-tracelet basis, delineating the entire critical path
for each before moving onto the next. Since we have each of
the tracelets available in its entirety, we do not need to actually
construct the whole dependence graph. Instead, we simply move
backwards through each tracelet, using the embedded timestamps
to (logically) follow the last-arriving edge at each of the implied
nodes. Any instruction whose execution (i.e. its E-node) is reached
by means of this backward traversal is deemed critical. For each
static instruction thus identified, we increment two counters, one
for the total number of dynamic instances seen, and another for the
total number of critical instances seen; for all other instructions, we
increment just the former counter.

Maintaining two counters for each static instruction in this man-
ner permits us to derive both a binary criticality and a likelihood
of criticality (LoC) profile from our analysis. In both cases, we use
the ratio of critical to total instances to determine the final criticality
value of each instruction. To obtain a binary value, we use a thresh-
old ratio of 0.125 to make the not-critical/critical distinction. This
corresponds roughly to the mechanism employed by the counter-
based predictor proposed by Fields et al., which has its counters in-
cremented by 8 when training critical, and decremented by 1 when
training not-critical. Though different threshold values may yield
slightly better results, we find that the 0.125 serves adequately for
our purposes. To derive an LoC value from the criticality profile,
we simply take the ratio of critical to total instances. Without a
significant loss of performance, LoC can be discretized to 8 values,
representable in 3 bits [17].

Once multiple tracelets have been processed in this way, we
write the entire criticality database to file. Obviously, the num-
ber of tracelets we process before doing so will have an effect on
the accuracy of the criticality database we generate. In particular,
processing more tracelets improves the extent to which we cover
the complete binary. We present data in the next section to quan-
tify this effect, and hence to gauge the amount of offline tracelet
processing that is necessary before sufficiently accurate criticality
databases are obtained.



Instruction Perfect instruction cache.
supply Aggressive tournament branch predictor.
Front-end 8-wide, 12 stages to dispatch.
Window 128-entry unified issue queue.

256-entry ROB.
Execute Up to 8 instructions per clock, any mix of up to 8 integer,

8 floating point and 4 memory instructions (load or store).
Latencies similar to the Alpha 21264 [10].
Perfect memory disambiguation.

Memory 32KB 4-way set associative L1 cache, 2 cycle access time.
8MB, 8-way set associative L2 cache, 12 cycle access time.
DRAM latency 300 cycles.

Table 1. Monolithic baseline machine parameters.

5. EVALUATION
The previous sections have demonstrated that our fabricated traces
closely match real program traces, both in terms of the control flow
they embed and the dataflow they induce. Of course, the ultimate
utility of our scheme is determined not by the integrity of the traces
themselves, but by the quality of the criticality we derive from
them. As a vehicle for evaluating this, we use the instruction steer-
ing and scheduling schemes for clustered microarchitectures that
were briefly discussed in Section 2. We show in Section 5.2 that
the criticality we generate from self-trained profile databases can
be used to very good effect in static versions of those two schemes.
In Section 5.3, we then proceed to remove some of our idealized
assumptions about the profile databases we use. We show that the
quality of the criticality we generate is not very sensitive to changes
to the input of the program we sample, nor to the rate at which we
collect samples. Finally, in Section 5.4, we quantify the amount of
work that must be performed by our scheme before the criticality
it generates is of sufficiently good quality. Before we present those
experiments, we briefly describe our simulation infrastructure.

5.1 Empirical framework
We use a trace-driven timing simulator to evaluate three different
clustered microarchitectures. Each is a different partitioning of
a monolithic (i.e. not clustered) 8-wide out-of-order superscalar.
Table 1 enumerates the salient parameters for that monolithic ma-
chine, which we use as a baseline throughout this section. The
three clustered machine configurations divide its execution and is-
sue queue resources equally among 2, 4 and 8 clusters.5

We simulate the SPEC 2000 Integer benchmark suite. We pro-
vide performance results from the reference input sets in all cases,
and, in Section 5.3, also use the training input sets to generate
our profile databases. All benchmark programs were compiled
for the Alpha ISA using the DEC C Alpha compiler (V5.9-005),
with peak optimization enabled, but with no profile feedback. We
perform our simulations at 10 equally-spaced checkpoints across
each benchmark’s complete run. In each of those runs, we simu-
late 100-million instructions after warming up the memory system
and branch predictor, giving a total of 1-billion instructions sim-
ulated per benchmark. When collecting our profiles, we produce
one database for each benchmark, this being the aggregation of the
behavior profiled during the 10 checkpoint runs.

We have implemented and evaluated two previous proposals for
using criticality in clustered machines. The first is the work of
Fields et al., who used their token-based critical path detector and
binary criticality predictor to: (1) steer instructions to the critical
producer of their operands (where there is a choice); and (2) give
precedence to critical instructions in the out-of-order issue queue
at each cluster [8]. We will henceforth refer to this as the binary-
5 In the case of the 8-cluster machine, we round up the memory issue bandwidth to 8
load/store per cycle to avoid having to share 4 memory ports among 8 clusters.

criticality scheme. The second, which we simply call the LoC
scheme, is the set of LoC-based steering and scheduling policies
introduced by Salverda and Zilles [18]. They use the same token-
based critical path detector as Fields et al., but they instead train an
LoC predictor. LoC predictions drive a collection of sophisticated
instruction steering and scheduling policies, the details of which
are not important here. Due to space constraints, we will present
data in this section for the LoC scheme only, but we will refer to
both in our discussion of results. (Average results for the binary
scheme do appear in Figure 1, however.)

To incorporate our fabricated criticality databases into the above
schemes, we developed for each of them a static version in which
we simply tag static instructions with a fixed criticality value, either
binary or LoC, as appropriate.

These schemes are themselves not the object of our study. They
are merely vehicles for demonstrating the efficacy of our technique.
That said, we want to emphasize that both constitute the state-of-
the-art in clustered microarchitecture research. Indeed, obtaining
the good IPC results published in the aforementioned studies is not
easy, if at all possible, in the absence of criticality information.

5.2 Performance from self-training
So as to isolate the effects of extraneous variables, we begin with
an evaluation of criticality derived from idealized profiles. By this
we mean two things. First, the profile database used by our offline
scheme is generated by sampling every instruction in the real ex-
ecution. We thereby ensure complete code coverage. Second, we
evaluate the quality of the resulting criticality by using it in simu-
lation of the same traces we profiled — we self train. Section 5.3
explores the implications of removing these idealized assumptions.

Figure 10 shows how our static version of the LoC scheme com-
pares to its dynamic counterpart. Results for the binary critical-
ity scheme (not shown) follow exactly the same trends. In both
cases, the average performance differences between the static and
dynamic schemes are extremely small. In fact, the static versions
are never more than 3% slower (eon on the 8-cluster configura-
tion) and, on average, are less than 1% slower than the dynamic
version. That eon stands out a little can be accounted for by the
data in Figure 5, where we showed that correlated control flow in
this benchmark causes some inaccuracies in our trace fabrication.
Overall, however, the criticality we fabricate is very precisely re-
producing the same average behavior achieved by an online critical
path detector and predictor.

5.3 Sensitivity analysis
We now explore the extent to which the above good results depend
on idealized profiling. There are two dimensions to this. The first
is the input sets that drive the profiling runs. We show in Sec-
tion 5.3.1 that criticality derived from profiles of the SPEC training
runs, and then used to drive runs of the reference input sets, con-
tinues to deliver good performance. There are a few cases in which
performance is not as good as the dynamic schemes, but this occurs
because of a lack of code coverage — an absence of, not inaccu-
racies within, criticality data. The second dimension is the amount
of profile data that must be collected. Section 5.3.2 quantifies the
extent to which this affects the quality of fabricated criticality.

5.3.1 Program input
Criticality appears to be remarkably stable across different program
input sets. We generated our profile databases from runs of the
SPEC training input sets, and then fed those databases into our
trace-fabrication infrastructure. The criticality databases thereby
produced were then used to drive precisely the same set of refer-
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Figure 10. The potential of static criticality. The graph plots the runtime, relative to the monolithic baseline, of the LoC-based policies on three three different
clustered machines. The SPEC reference input sets were used in all simulations. Bars labeled ‘2’, ‘4’ and ‘8’ plot the performance of dynamic versions of the
LoC-based policies for 2-, 4- and 8-cluster machines. Adjacent to each of those, bars labeled ‘s’ plot the performance of the corresponding machine, driven now by
static LoC data derived from our trace fabrication scheme. The shaded portions of those bars show the performance achieved when trace fabrication is driven by
profiling of the reference inputs (i.e. self-training); the unshaded portion (not visible in most bars), by profiling of the training input sets.

1.00

1.05

1.10

1.15

no
rm

al
iz

ed
 ru

nt
im

e

2 s p 4

1.22

s p 8

1.26

s p
bzip

2 s p 4 s p 8 s p
gzip

2 s p 4

1.16

s p 8

1.19

s p
perl

(a) Patched criticality

1.00

1.05

1.10

1.15

no
rm

al
iz

ed
 ru

nt
im

e

2 p 4 p 8 p
  

(b) New averages

Figure 11. Code coverage. The graph on the left shows that performance of the three worst-performing benchmarks can be drastically improved when the criticality
database used by the static LoC scheme is supplemented with criticality derived from profiling of the reference input sets (only missing information is added; no
existing criticality data is modified). The first two bars for each clustered machine repeat the data from Figure 10. Bars labeled ‘p’ show the performance with the
patched criticality databases. The graph on the right shows how the overall performance averages change when just these three amended results are factored in.

ence input set runs reported on above. The results are shown by
the unshaded portions of the bars labeled ‘s’ in Figure 10. Perfor-
mance is, in general, indistinguishable from the self-trained results:
most benchmarks show little or no change. Only three — bzip,
gzip and perl — stand out as suffering substantial performance
losses. However, those losses can be ascribed to poor code cov-
erage in the training input sets. To demonstrate this, we patched
the training criticality database with some of the fabricated LoC
derived from the reference inputs. That is, we supplement the criti-
cality data by adding to it from the self-trained database, but we do
so only for instructions for which we are entirely missing critical-
ity information; we do not modify any existing data. Figure 11(a)
shows that the three worst-performing benchmarks now all perform
similarly to the rest. With these amendments to just those three
benchmarks, the average performance bars from Figure 10 change
to those shown in Figure 11(b) — very close, now, to the idealized
results of Figure 10.

That code coverage appears to be the only cause for performance
loss bodes well for an offline infrastructure in which there is contin-
uous profiling of program execution. In such an environment, the
profile databases can be repeatedly updated across multiple runs of
an application, steadily improving the ability of the trace fabrica-
tion process to achieve complete code coverage.

5.3.2 Quantity of samples
A second factor that we idealized in Section 5.2 is profiling of every
instruction in the real execution (we assumed a sampling rate of
100%). To explore our sensitivity to this assumption, we could
change the sampling rate, but that, by itself, is not a very useful
metric: the timespan over which sampling occurs can mitigate even
a very low sampling rate. A more useful metric, then, is the total
number of instruction samples needed before the fabricated traces
become sufficiently representative of real execution. To measure
this, we adopted an approach in which we distill small, fixed-size
profile databases from the fully-sampled databases that we have
been using up to this point. This is achieved by randomly picking
profile records from the original databases, biasing the choices as
per those records’ sampled frequency. In a series of experiments,
we pick a fixed number of samples — ranging from one thousand to
one million — to generate a distilled database, which we then use to
drive the trace fabrication logic. We then compare the performance
obtainable from each of the resulting criticality databases.

Figure 12 shows how the performance of the static scheme im-
proves as a function of the number of profile samples used to
drive the trace fabrication infrastructure. Clearly, performance very
rapidly converges on its final value, with all machine configurations
not showing much improvement beyond 128-thousand samples.
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Figure 12. Performance as a function of sample count. Each line plots
the harmonic mean (across all 12 SPEC Integer benchmarks) of the runtime
of each of the 3 clustered machines relative to that of the monolithic machine.
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trace fabrication scheme.
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Figure 13. Performance as a function of tracelets generated. Like Fig-
ure 12, each line shows the harmonic mean of runtime on the 3 clustered
machines relative to that on the baseline. In these experiments, we use a
complete profile database, but run the trace fabrication logic for a fixed num-
ber of (1000-instruction) tracelets before emitting the criticality database.

5.4 IPC convergence
We conclude this section by showing that our offline logic tends to
converge on its final criticality profiles very quickly. That is, we do
not need to fabricate and analyze many tracelets before we obtain a
sufficiently accurate criticality database. Figure 13 shows the per-
formance of the three clustered machines relative to the monolithic
baseline as a function of the number of tracelets examined before
their criticality database is generated. Performance very quickly
converges on its final value by the time we have processed on the or-
der of 100-thousand instructions (i.e. 100 tracelets of length 1,000).

6. CONCLUSION
We have demonstrated that instruction criticality is rather stable,
both within and across runs of a program, a property that renders it
well-suited to offline analysis. We have also shown that criticality
can be accurately computed using profile information obtainable
from hardware already available in commercial processors. Our
approach is built on two key observations. First, in assessing an
instruction’s criticality, we are really characterizing what fraction
of a static instruction’s dynamic instances are critical. Second, this
fraction is stable to the extent that we can substitute representa-
tive for real execution traces in order to compute it. We proposed
a profile-guided random trace construction method that exploits
statistical properties of the program to generate representative in-
struction traces, plus an abstract execution method for discover-
ing which store-load pairs in those traces are liable to alias. This
approach is extremely effective, achieving upwards of 90% of the
benefit of dynamic critical path predictors in hardware.

We believe that random trace construction is an interesting new
analysis technique that can potentially serve a number of other ap-
plications. In particular, it offers a compelling design point between
traditional trace-driven dynamic analysis and static compiler anal-
ysis. Furthermore, although the method is already modest in terms
of its input data and processing requirements, we believe it could
be further optimized to reduce the number of tracelets examined
before results converge. For example, biasing trace seed selection
to cover cold regions of the code, and compensating for this when
aggregating the results, could potentially achieve better code cov-
erage with a smaller number of tracelets.
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